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Abstract. The Lagrangian and Hamiltonian formulations for the relativistic classical dynamics of a charged
particle with dipole moment in the presence of an electromagnetic field are given. The differential conservation
laws for the energy-momentum and angular momentum tensors of a field and particle are discussed. The
Poisson brackets for basic dynamic variables, which form a closed algebra, are found. These Poisson brackets
enable us to perform the canonical quantization of the Hamiltonian equations that leads to the Dirac wave
equation in the case of spin 1/2. It is also shown that the classical limit of the squared Dirac equation
results in equations of motion for a charged particle with dipole moment obtained from the Lagrangian
formulation. The inclusion of gravitational field and non-Abelian gauge fields into the proposed formalism
is discussed.

1 Introduction

The study of relativistic dynamics of charged particles with
internal degrees of freedom (spin) originates from [1, 2].
Later, the equations of motion for such particles in an ho-
mogeneous electromagnetic field were derived by general-
ization of the non-relativistic equations of motion for coor-
dinate and spin of a particle to the relativistic case [3]. An-
other approach for obtaining the relativistically-invariant
equations of motion for charged particles with internal de-
grees of freedom is discussed by considering complex par-
ticles [4]. The definition of the covariant center of energy
is the key problem in this approach.

The Lagrangian formulation for the relativistic motion
of a charged particle with spin is of special interest. The
main advantage of such an approach is that the knowledge
of a suitable Lagrangian allows us to obtain results without
any additional assumptions. However, the construction of
the Lagrangian formalism for charged particles with spin
needs the introduction of additional dynamic variables,
which are conjugate to the components of relativistic spin
described by an antisymmetric tensor [5–9]. Here some au-
thors use singular Lagrangians following the approach sug-
gested by Dirac for constrained Hamiltonian systems [6,8]
(in this case a free Lagrangian is parametrically invariant).
However, the alternative formalism based on non-singular
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Lagrangians is also often used [5,7,9] (the free Lagrangian
is not parametrically invariant).

The present paper concerns the construction of con-
sistent Lagrangian and Hamiltonian formulations for the
relativistic dynamics of charged particles with dipole mo-
ment in an electromagnetic field. As a starting point of
our consideration we introduce the dipole moment tensor
and define the currents associated with a charge of particle
and its dipole moment. These definitions are given in ac-
cordance with Maxwell’s equations. The main idea of the
offered Lagrangian approach consists in the introduction of
an orthogonalmatrix for the rotations in a four-dimensional
pseudo-Euclidean space. This matrix determines a funda-
mental representation of the Lorentz group. It is specified
by six independent parameters, which are taken by us to be
generalized coordinates. The antisymmetric dipolemoment
tensor is also characterized by six variables, which play the
role of generalized momenta. Using this idea we construct
a relativistically-invariant Lagrangian, which leads (in the
formalism of proper time) to the relativistically-invariant
equations of motion for the basic dynamic variables (four-
position and four-momentum of a particle, tensor of dipole
moments, and matrix of pseudo-Euclidean rotations).

We also discuss the differential conservation laws for
the field and particles and obtain the explicit expressions
for the energy-momentum and angular momentum tensors
of a charged particle with dipole moments. The analysis
of conservation laws enables us to introduce, in the clas-
sical case, a tensor of intrinsic angular momentum (spin).
The relationship between this tensor and the dipole mo-
ment tensor is given by the gyromagnetic ratio expressed
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through the quantities entering the Lagrangian. We show
that if the particle has no electric dipole moment, then it
possesses a normal magnetic moment that corresponds to
the gyromagnetic ratio, equal to e/m.

Wewould like to note that the introducedmatrix of four-
rotations has not only a formal but also a simple physical
sense: it specifies the evolution of the dipole moment tensor
with respect to proper time. This evolution represents a
rotation in pseudo-Euclidean space.

We also present the Hamiltonian formulation of the
problem. The obtained Hamiltonian of relativistic par-
ticles with dipole moments does not contain the above
matrix of four-rotations (it represents a cyclic variable).
The found Poisson brackets for the basic dynamic vari-
ables form a closed algebra. The developed Hamiltonian
approach makes it possible to perform the canonical quan-
tization of the obtained Hamiltonian equations. In the case
of spin 1/2 this quantization results in the squared Dirac
wave equation. We show also that the classical limit of
the squared Dirac equation gives the previously obtained
equations of motion for a charged particle with dipole mo-
ment. In the appendix we generalize the developed for-
malism to cover motion in gravitational and non-Abelian
gauged fields.

2 Relativistically-invariant Lagrangian
of point dipole moments

In field theory one can obtain the field equations as well
as the equations of motion of particles, by varying an ac-
tion functional with respect to dynamic variables. In this
section we shall construct a relativistically-invariant action
functional, which describes the interaction of particles pos-
sessing dipole moments with an electromagnetic field.

To begin with, we would like to remind the reader that
the four-vector j(e)µ (x) of the electric current density created
by a particle of charge e is determined by

j(e)µ (x) = e

∫ ∞

−∞
dτ ξ̇µ(τ)δ(x− ξ(τ)). (1)

Here ξµ(τ) is the four-trajectory of a particle (τ is a pa-
rameter; the dot means derivation with respect to τ ; Greek
indices take the values 0, 1, 2, 3). The four-vector (1) of the
electric current density satisfies the differential conserva-
tion law ∂µj

(e)
µ (x) = 0.

If a point particle has dipole moment, then their densi-
ties can be specified by means of the antisymmetric tensor
Σµν(x) of rank two

Σµν(x) =
∫ ∞

−∞
dτσµν(τ)δ(x− ξ(τ)), (2)

where σµν(τ) is the dipole moment tensor. In addition,
the components Σ0k(x) = dk(x) are the densities of the
electric dipole moment andΣkl(x) = εklsms(x) specify the
densities of the magnetic dipole moment (see Appendix A).

Hence, the four-vector of the current density, which is asso-
ciated with the dipole moment of the particles is defined by

j(d)µ (x) = ∂νΣµν(x) = ∂ν
∫ ∞

−∞
dτσµν(τ)δ(x− ξ(τ)); (3)

moreover, ∂µj(d)µ (x) = 0. The four-vector of the total cur-
rent density created by a charged particle with dipole mo-
ment is given by

jµ(x) = j(e)µ (x) + j(d)µ (x), ∂µjµ(x) = 0. (4)

For particles which have no internal degrees of freedom
and interacting with an electromagnetic field the action
functional is of the form

W = Wf +Wp +Wint, (5)

where

Wf = − 1
16π

∫ t2

t1

d4xFµν(x)Fµν(x), d4x = dtd3x (6)

is the part of the action functional that corresponds to the
free electromagnetic field Fµν(x) = ∂µAν(x) − ∂νAµ(x)
(Aµ(x) is the four-potential),

Wint = −
∫ t2

t1

d4xAµ(x)jµ(x), (7)

describes the interaction of particles with an electromag-

netic field, and Wp = −m ∫ τ2
τ1

dτ
√
ξ̇µξ̇µ is the part of

the action functional for free particles (m is the parti-
cle mass). Such a form of Wp is parametrically invariant
(τ → τ ′ = τ ′(τ)) and leads to the fact that the gener-

alized momentum pµ = −∂Lp/∂ξ̇µ = mξ̇µ/

√
ξ̇λξ̇λ (Lp is

the Lagrangian corresponding toWp) lies on the mass shell
pµpµ = m2. This circumstance does not allow us to con-
sider the pµ as independent variables when we construct
the relativistically-invariant Hamiltonian approach and the
corresponding quantum theory (compare to the similar sit-
uation in the theory of gauge fields). Therefore, as opposed
to the usual theory, we need to break the parametric invari-
ance ofWp. To this end let us chooseWp = −m

2

∫ τ2
τ1

dτ ξ̇µξ̇µ.
We shall see further that such an action functional results
in the correct equations of motion.

However, if a particle has internal degrees of freedom
(specified by σµν), then an appropriate part of the action
functional should be added to Wp. In order to find it let us
draw the analogy to spin variables [10,11]. In the case of spin
dynamics three angles θk(t) (the generalized coordinates),
which determine the matrix aik(θ) of three-dimensional
rotations, correspond to three spin variables Sk (the gen-
eralized momenta). As a result, the Lagrangian describing
the dynamics of free spins is written as L0 = −Siωi, where
ωi = 1

2 εikl(ã(t)ȧ(t))kl is the so-called Cartan form and ã(t)
is the transpose matrix a(t).

In the case of the relativistic dynamics of dipole mo-
ments, six parameters θa(t) (the generalized coordinates),
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which determine the orthogonal matrix aµν(θ) (aµνaµλ =
δλν ) of four-dimensional pseudo-Euclidean rotations, are
associated with the six variables σµν (the generalized mo-
menta). Therefore, using the analogy to spin variables, let
us write the Lagrangian corresponding to the dipole mo-
ment as L0 = − 1

2κσ
µνa λ

µ ȧνλ (κ is a certain constant, the
physical meaning of which we shall clarify below). Thus, we
obtain the following action functional for free relativistic
particles with dipole moments:

Wp = −
∫ τ2

τ1

dτ
(
m

2
ξ̇µξ̇

µ +
1
2κ
σµνωµν

)
, (8)

where ωµν = a λ
µ ȧνλ is the right Cartan form.

Let us transform the expression for Wint. Substitution
of (4) into (7) yields

Wint = −
∫ τ2

τ1

dτ
(
eAµ(ξ)ξ̇µ +

1
2
Fµν(ξ)σµν

)
,

where ξ0(τ1) = t1 and ξ0(τ2) = t2. Hence, the total ac-
tion functional for the particle with dipole moment in an
electromagnetic field can be written as

W̃ = Wp +Wint =
∫ τ2

τ1

dτL(τ), (9)

where the Lagrangian L(τ) is given by

L(τ) = −m
2
ξ̇µξ̇

µ − 1
2κ
σµνa λ

µ ȧνλ − eAµ(ξ)ξ̇µ

− 1
2
Fµν(ξ)σµν . (10)

Having this Lagrangian we shall derive the equations of
motion for charged particles with dipole moments in an
electromagnetic field.

3 Equations of motion for point dipole
moments and differential conservation laws

In this section we employ the principle of the stationary
action in order to find the equations of motion for the basic
dynamic variables. Varying the obtained action functional
(9) and (10) with respect to the independent variables
ξµ, σµν , aµν , and taking the variations of these quantities
as zero at the boundaries of the corresponding limits of
integration, one finds

mξ̈µ = eFµν(ξ)ξ̇
ν +

1
2
σνλ∂µFνλ(ξ), (11)

σ̇µν = (σνλaµρ − σµλaνρ)ȧλρ, (12)

ȧµν = −κFλµ(ξ)a ν
λ . (13)

Let us explain the derivation of (12). The variation of
the Lagrangian (10) with respect to aµν is given by

δaL =
1
2κ

δa λ
µ (σµν ȧνλ − σ̇νµaνλ − σνµȧνλ).

We have omitted the term (d/dτ)(σµνδaνλa λ
µ ) because it

does not contribute to the variation of the action functional.
Next using the orthogonality of aµν (aρλaρη = δηλ), one gets

δaL =
1
2κ

δa λ
µ aρλ(σ

µνaρηȧνη − σρνaµηȧνη − σ̇ρµ).

Since δa λ
µ aρλ is an arbitrary quantity antisymmetric in

the indices ρ, µ, the variational principle results in (12).
The obtained relativistically-invariant equations of mo-

tion describe the dynamics of a point charged particle with
dipole moment in an electromagnetic field. Eliminating ȧλρ
in (12), we get

σ̇µν = κ
(
σµλF νλ(ξ)− σνλFµλ(ξ)

)
. (14)

Equations (11) and (14) represent the closed system of dif-
ferential equations for ξµ,σµν . Note that (13) canbewritten
as ωµν = −κFµν . Thus, the electromagnetic field taken at
the point of presence of the particle coincides with the
right Cartan form ωµν (see its definition above). The dy-
namic equations (11) and (14) allow us to find the following
integrals of motion with respect to the parameter τ :

I1 = mξ̇µξ̇µ − σµνFµν , I2 =
1
2
σµνσµν ,

I3 = σµνσλρε
µνλρ

(İ1 = İ2 = İ3 = 0). Equations (13) and (14) for aµν and
σµν give two other integrals of motion,

I4 =
1
2
aµνaµλ, I5 = a λ

µ a
ρ
ν σ

µν , İ4 = İ5 = 0.

Here we have used the antisymmetry of Fµν and σµν .
The integral of motion I1 determines the proper time

parameter τ similar to how ξ̇µξ̇
µ = 1 determines the proper

time in the case of the usual Lorentz equations of motion.
The integral of motion I4 reflects the fact that aµν(τ)
evolves as an orthogonal matrix. Finally let us give inter-
pretation to I5. Since the transformation xµ → x′

µ = aµνx
ν

preserves the lengths of vectors and angles between them,
the relation σµν(τ) = a ν

λ (τ)a µ
ρ (τ)σλρ(0), being a conse-

quence of I4, shows that in the “spin” space the dipole
moment tensor σµν(τ) evolves like a “four-solid”.

Having the equations of motion we can formulate the
differential conservation laws for the energy-momentum
and angular momentum tensors. We start from the energy-
momentum conservation law. According to the action prin-
ciple δ(Wf+Wint) = 0 (see (6) and (7)), the electromagnetic
field Fµν satisfies the Maxwell equations:

∂νFνµ = 4πjµ, ∂µFνλ + ∂λFµν + ∂νFλµ = 0, (15)

where the total current density jµ(x) is given by (1)–(4).
These field equations lead to the following formula:

∂νT
µν = −Fµλjλ, (16)

where

Tµν(x) =
1
4π

(
−FµρF νρ +

1
4
gµνFρλF

ρλ

)
(17)
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is the symmetric (Tµν = T νµ) energy-momentum ten-
sor of the electromagnetic field and gµν is the flat space
Minkowskian metric. The relation (16) can be transformed
into the following differential conservation law:

∂ν(Tµν + T ′µν) = 0. (18)

To this end we use the simple formula, which follows from
(3) and (15),

Fµνj(d)ν = Fµν∂λΣνλ = ∂λ(FµνΣνλ) +
1
2
Σνλ∂

µF νλ.

Then bearing in mind also the definition of Σµν(x) and
j
(e)
ν (x) and using (11), one finds

Fµνj
ν = ∂λ

∫ ∞

−∞
dτFµν(ξ)σνλ(τ)δ(x− ξ(τ))

+m
∫ ∞

−∞
dτδ(x− ξ(τ))ξ̈µ, (19)

whence we come to the differential conservation law (18),
where

T ′µν(x) =
∫ ∞

−∞
dτtµν(τ)δ(x− ξ(τ)), (20)

tµν(τ) = Fµλ(ξ)σ
λν +mξ̇µξ̇ν .

The quantity T ′µν(x) should be interpreted as the energy-
momentum tensor of a charged particle with dipole mo-
ment interacting with an electromagnetic field. Note that
t µµ (τ) = I1. Since the particle proper field diverges on its
four-trajectory, the expression for tµν as well as (11) and
(14) require, generally speaking, the renormalization pro-
cedure if Fµν is the total electromagnetic field including
the particle proper field.

Let us now obtain the differential conservation law for
the total relativistic angular momentum tensor. The an-
gular momentum tensor of the electromagnetic field is de-
fined by

Mµν;ρ(x) = xµT νρ(x)− xνTµρ(x), (21)

whence according to (16), we have

∂ρM
µν;ρ = −xµF νρjρ + xνFµρjρ.

Similar to the previous calculations this relation can easily
be transformed into the differential conservation law for
the total angular momentum tensor,

∂ρ(Mµν;ρ +M ′µν;ρ) = 0. (22)

Indeed, noting that

∂ρM
µν;ρ = −∂ρ

∫ ∞

−∞
dτ(ξµtνρ − ξνtµρ)δ(x− ξ(τ))

+
1
κ

∫ ∞

−∞
dτ σ̇νµ(τ)δ(x− ξ(τ))

(we have used here (19), (20) and (14)), we come to the
differential conservation law (22), where

M ′µν;ρ(x) =
∫ ∞

−∞
dτmµν;ρ(τ)δ(x− ξ(τ)), (23)

mµν;ρ(τ) = ξµtνρ − ξνtµρ + Iµν ξ̇ρ, Iµν =
1
κ
σµν .

The quantity M ′µν;ρ should be interpreted as the angular
momentum tensor of a charged particle with dipole mo-
ment interacting with an electromagnetic field. Moreover,
the first two terms in (23) represent the orbital angular
momentum tensor, whereas the third term is the intrinsic
(spin) angular momentum tensor. Therefore, the quantityκ
should be treated as the gyromagnetic ratio. Note that the
quantities tµρξ̇ρ,mµν;ρξ̇ρ specify the four-vector of momen-
tum and four-tensor of the angular momentum of a particle
in an electromagnetic field.

In the obtained differential conservation laws (18) and
(22), the tensors Tµν ,Mµν;ρ are defined only by an electro-
magnetic field. These quantities given by (17) and (21) have
an unambiguous interpretation. The tensors T ′µν , M ′µν;ρ
are associated with particles interacting with an electro-
magnetic field (see (20) and (23)). The components Tµ0 +
T ′µ0 can be treated as the density of energy-momentum
(tµν is not symmetric). Then the first term in mµν;ρ =
(ξµtνρ − ξνtµρ) + Iµν ξ̇ρ determines uniquely the orbital
angular momentum, whereas the second one describes the
spin angular momentum. In the field formulation, it is al-
ways possible to attain the symmetric form of the total
tensor Tµν . Then Mµν;ρ = xµT νρ − xνTµρ. However, in
this case, it is difficult to extract the orbital angular mo-
mentum and spin angular momentum from Mµν;ρ. For
example, in the monograph [12], only the procedure of the
extraction of the spin angular momentum is considered on
the basis of the Dirac equation for free particles. Note that
the canonical and symmetric tensors of energy-momentum
result in the same values of the total energy, momentum,
and orbital momentum.

In the usual formulation of general relativity it is neces-
sary to use the symmetric energy-momentum tensor. How-
ever, in its modified formulation, which takes into account
the effect of torsion, the canonical (not symmetric) energy-
momentum tensor should be used [13].

Usually, the elementary particles have only a magnetic
dipole moment (the electric dipole moment is absent). This
means that the components σ0k are zero in the frame of
reference in which a particle is in rest. Since the quantity
σµν ξ̇ν represents the four-vector, which is zero in the frame
of reference where ξ̇ν = (0, 0, 0, ξ̇0), the relativistically-
invariant condition, which reflects the fact of the absence
of electric dipole moments, can be written in the form [7,14]

σµν ξ̇ν = 0. (24)

In order to show the consistency of the constraint (24)
with the equations of motion, let us differentiate it with
respect to τ and use (11) and (14). As a result, one finds

d
dτ

(σµν ξ̇ν) = κσλν ξ̇νF
µ
λ +

(
κ− e

m

)
σµλξ̇νF

ν
λ
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+
1

2m
σµνσλρ∂νFλρ.

Therefore, as it can be easily seen, the constraint (24) is
consistent with the dynamic equations (11) and (14) for a
homogeneous (slowly varying) field and gyromagnetic ratio
κ = e/m (the speed of light c = 1). The gyromagnetic ratio
κ = e/m corresponds to the normal magnetic moment. In
the general case κ = ge/2mc so that the magnetic dipole
moment µ = κ�S, where g represents the gyromagnetic
factor, and S is the spin of a particle. The consistency of
(24) with the dynamic equations in the case of a specific
inhomogeneous field is discussed in [14].

As we have shown, the obtained set of equations (11)
and (14) does not describe the dynamics of particles with
an anomalous magnetic moment. This is due to the fact
that the requirement σµν ξ̇ν = 0 is not consistent with the
equations of motion. Therefore, in order to describe the
dynamics of particleswith an anomalousmagneticmoment,
we use the method of Lagrangian multipliers. As a result
the Lagrangian (10) is of the form

L(τ) = −m
2
ξ̇µξ̇

µ − 1
2κ
σµνa λ

µ ȧνλ − eAµ(ξ)ξ̇µ

− 1
2
Fµν(ξ)σµν −∆µσ

µν ξ̇ν , (25)

where the∆µ are the Lagrangian multipliers. The variation
of the action functional (9) with this Lagrangian over ∆µ,
ξµ, σµν , aµν leads to the following set of equations:

σµν ξ̇ν = 0, (26)

mξ̈µ + η̇µ = eFµν ξ̇
ν +

1
2
σλν∂µFλν , (27)

σ̇µν = (σνλaµρ − σµλaνρ)ȧλρ, (28)

ȧµν = −κaλν(Fλµ − ξ̇λ∆µ + ξ̇µ∆λ), (29)

where ηµ = −σµν∆ν ; moreover, ηµξ̇µ = 0. The elimination
of ȧλρ in (28) results in the following equation for σµν :

σ̇µν = κ(σµλF νλ − σνλFµλ + ξ̇νηµ − ξ̇µην). (30)

The quantity ηµ = −σµν∆ν entering the closed system of
dynamic equations (27) and (30) can be found as a result
of multiplication of (30) by ξ̇ν ,

d
dτ

(σµν ξ̇ν) = σµν ξ̈ν

+κ(σµλF νλξ̇ν − σνλFµλξ̇ν + ξ̇ν ξ̇νη
µ − ξ̇µξ̇νην)

whence taking into account the requirement (26) and the
definition of ηµ, one finds

ηµ =
(ξ̈ν − κξ̇λF λ

ν )σνµ

κξ̇ν ξ̇ν
, κ =

ge

2m
. (31)

Note that the dynamic equations (27) and (30) agree with
those derived in [5, 7]. However, the authors of [5] used

the requirement σµν(pµ − eAµ) = 0 (pµ is the canonical
momentum) instead of σµν ξ̇ν = 0. As we shall show the
latter requirement follows from the classical limit of the
squared Dirac equation. The dynamic equations (27) and
(30) along with (31) lead to the following relation, which
determines the parameter τ :

ξ̇µξ̇
µ = 1 +

1
m
σνλFνλ.

Let us show that (27) and (30) are in correspondence
with Bargmann–Michel–Telegdi (BMT) equations in the
case of weak and homogeneous electromagnetic fields. In
doing so, we introduce the Pauli–Lyubanskii spin vector,

wµ =
1
2κ
εµνλρσνλξ̇ρ, (32)

whence
σµν = κεµνλρξ̇

λwρ. (33)

Using (30), (32) and (33), one finds

ẇµ = κ(ξ̇µξ̇νwλF ν
λ − ξ̇ν ξ̇νwλF µ

λ ) + (ξ̇νwµ − ξ̇µwν)ξ̈ν .

Here we have employed the fact that ξ̇µwµ = 0. In the linear
approximation in the field Fµν and zeroth approximation
in the gradients of the electromagnetic field, the latter
equation along with (27) take the form

mξ̈µ = eFµν ξ̇
ν , (34)

ẇµ =
(
κ− e

m

)
ξ̇µξ̇νw

λF ν
λ − κwνF µ

ν ,

κ =
ge

2m
. (35)

We have neglected η̇µ because this quantity contains the
gradients of an electromagnetic field and the terms non-
linear in Fµν . The obtained equations (34) and (35) rep-
resent the BMT equations [3].

In conclusion of this section we would like to note that
in the weak-field limit and with small inhomogeneities the
quantity ηµ, according to (27) and (31) is defined as

ηµ =
1
κ

( e

m
− κ

)
F λ
ν ξ̇λσ

νµ.

In the case of a normal magnetic moment (κ = e/m), ηµ
becomes zero and (27) and (20) coincide with the equations
of motion (11) and (14).

4 The Hamiltonian approach

We are now in a position to construct the Hamiltonian
approach and to obtain the Poisson brackets for basic dy-
namic variables. Following the conventional rules let us
introduce the canonical four-momentum pµ, which can be
written according to (10) as

pµ = − ∂L

∂ξ̇µ
= mξ̇µ + eAµ(ξ). (36)
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Then the Lagrangian (10) becomes L = Lk−H, where Lk
is its kinematic part linear with respect to derivatives of
the dynamic variables ξµ, aµν and H is the Hamiltonian,

Lk = −pµξ̇µ − 1
2κ
σµνa λ

µ ȧνλ, (37)

H = − 1
2m

(pµ − eAµ(ξ))(pµ − eAµ(ξ))

+
1
2
σµνFµν(ξ). (38)

Here ξµ, pµ, aµν , σµν are the dynamic variables; moreover,
aµν is a cyclic variable (it does not enter the Hamiltonian
(38)).

The Poisson brackets are determined by the kinematic
part structure of the Lagrangian. The matrix a λ

µ (θ) de-
pends on six parameters (four-rotations), which are conju-
gate to the six variables σµν = −σνµ. Let us denote them
through θa (a = 1, . . . 6) assuming θa = θµν at µ < ν and
θµν = −θνµ at µ > ν. As a result the kinematic part of the
Lagrangian is of the form

Lk = −pµξ̇µ − 1
2
χµν θ̇µν , (39)

where

χµν =
1
2κ
σλρRµνλρ , Rµνλρ = a σ

λ

∂aρσ
∂θµν

. (40)

As it can be easily seen from the structure of (39), the
non-trivial Poisson brackets have the form

{pµ, ξν} = δµν , {χµν , θλρ} = δ
(µν)
(λρ) ≡ δµλδνρ − δνλδµρ . (41)

Having obtained the second expression from (41) we
are able to find the Poisson brackets for σµν , aλρ. First of
all, since {θµν , θλρ} = 0,

{aµν , aλρ} = 0. (42)

Next, noting that (see (40) and (41))

δ
(µν)
(λρ) =

1
2κ
Rµνησ{σησ, θλρ} =

1
2κ
{σµν , θησ}Rησλρ , (43)

or
1
2κ
{σµν , θησ}a κ

λ

∂aρκ
∂θησ

= δµλδ
ν
ρ − δνλδµρ ,

one obtains

1
κ
{σµν , aρσ} = aµσδ

ν
ρ − aνσδµρ . (44)

In order to find {σµν , σλρ} we employ the fact that
{χa, χb} = 0 with χa = (1/κ)Rabσ

b (b = µν at µ < ν).
Then taking into account (42) we have

0 =
1
κ2 {Racσc, Rbdσd}

=
1
κ2

(
RacR

b
d{σc, σd}+Rbdσ

c{Rac , σd}

+Racσ
d{σc, Rbd}

)
.

The use of (43) results in

Rac{σc, Rbd}σd = Rac{σc, θl}
∂Rbd
∂θl

σd = κ
∂Rbd
∂θa

σd.

Therefore,

1
κ
RacR

b
d{σc, σd}+

(
∂Rbd
∂θa

− ∂Rad
∂θb

)
σd = 0.

Noting that

∂Rbd
∂θa

− ∂Rad
∂θb

=
∂a λ

µ

∂θa

∂aνλ
∂θb

− ∂a λ
µ

∂θb

∂aνλ
∂θa

= gρσRaρµR
b
σν − gρσRaρνRbσµ, d ≡ µν,

we obtain

1
κ
RacR

b
d{σc, σd} = −gρσRaρµRbσνσµν .

The right-hand side of this expression should be reduced to
an antisymmetric form with respect to the indices ρ, µ and
σ, ν (in doing so we need to bear in mind thatRaρµ = −Raµρ).
The result is

1
κ
{σσµ, σκν} = gµκσσν−gσκσµν−gµνσσκ+gσνσµκ. (45)

The Poisson brackets (44) and (45) can be written in terms
of Iµν = (1/κ)σµν :

{Iµν , aρκ} = aµκδ
ν
ρ − aνκδµρ , (46)

{Iσµ, Iκν} = gµκIσν − gσκIµν − gµνIσκ + gσνIµκ.

Note that the secondPoissonbrackets looks like the commu-
tation relation for the infinitesimal operators of the Lorentz
group (see the next section).

The Hamiltonian equations of motion for the basic dy-
namic variables are of the form

ξ̇µ = {ξµ, H}, ṗµ = {pµ, H},
σ̇µν = {σµν , H}, ȧµν = {aµν , H}. (47)

It is easy to prove that these equations coincide with (11)–
(13).

5 Quantization of the equations of motion
for point dipole moments

In this section applying the Dirac procedure, we consider
the quantization of (11)–(13) written in the Hamiltonian
form (see (47)). The quantization for the spin variables
on the basis of the Schwinger dynamic principle [15] is
discussed in [16].

When constructing the quantum theory, the dynamic
variables ξµ, pµ, Iµν should be replaced by the correspond-
ing operators ξ̂µ, p̂µ, Îµν (these variables form a closed
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algebra, whereas aµν is a cyclic variable). Next, in order to
obtain the equations of motion for these operators, we need
(according to Dirac) to replace in (47) the Poisson brackets
by commutators {. . . , H} → −i[. . . , Ĥ] (the Hamiltonian
is given by (38) and Iµν = σµν/κ). As a result the equa-
tions of motion in Heisenberg’s representation with respect
to the parameter τ have the form

˙̂pµ = −i[p̂µ, Ĥ], ˙̂
ξµ = −i[ξ̂µ, Ĥ], ˙̂

Iµν = −i[Îµν , Ĥ];
(48)

moreover, the dynamic variables meet the following non-
trivial equal-time commutation relations (see (41) and
(46)):

−i[p̂µ, ξ̂ν ] = δµν , (49)

−i[Îλµ, Îκν ] = gµκÎλν − gλκÎµν + gλν Îµκ − gµν Îλκ.
In addition, the first one coincides with the permutation
relation for the generators of the Lorentz group. In this
representation, the state vector ψ does not depend on τ ,
i ∂ψ∂τ = 0.

In the Schroedinger representation with respect to the
parameter τ , the above operators do not depend on τ ,
whereas the state vector ψ(τ) satisfies the Schroedinger
equation i ∂ψ(τ)

∂τ = Ĥψ(τ). Let us choose its stationary
solution: ψ(τ) = e−iετψ,

Ĥψ = εψ. (50)

This solution corresponds to the particle “energy” ε when
the Hamiltonian H does not depend on τ , ε = H|τ→−∞ =
−m/2 (we consider that a particle is out of the field action at
τ → −∞; moreover, ξ̇µξ̇µ = 1). Thus, taking into account
(38), (50) takes the form{

(p̂µ − eAµ(ξ̂))(p̂µ − eAµ(ξ̂))

−eÎµνFµν(ξ̂)−m2
}
ψ(ξ̂) = 0. (51)

Let us take the realization of ξ̂µ, p̂µ by means of the
multiplication operators xµ and the differential operators
i∂µ,

ξ̂µ → xµ, p̂µ → i∂µ.

If we now take the realization of Îµν as Îµν = 0 in (51), then
we come to the Klein–Gordon equation in the presence of an
electromagnetic field, which corresponds to scalar particles,{

(∂µ + ieAµ(x))(∂µ − ieAµ(x)) +m2}ψ(x) = 0.

In order to obtain the realization of the operators Îµν

for spin equal 1/2 we should seek the solution for Îµν in the
class of double-row matrices. This solution is of the form

Îµν =
i
4

(σ̄µσν − σ̄νσµ), (52)

where σµ ≡ (σ0 = 1, σ1, σ2, σ3) are the Pauli matrices and
σ̄µ = (σ0, −σ1, −σ2, −σ3). Therefore, in the considered

representation of the dynamic variables, the wave function
ψ is a two-component function of x, ψ → ψα(x). It satisfies
the squared Dirac equation [17]:{

(∂µ + ieAµ)(∂µ + ieAµ) + eÎµνFµν +m2
}
ψ(x) = 0.

(53)
Noting that

1
2

(σ̄µσν − σ̄νσµ) = σ̄µσν − gµν ,

this equation can be written, according to (52), in the form{
m2 + σ̄µσν(∂µ + ieAµ)(∂ν + ieAν)

}
ψ(x) = 0.

Introducing next a new field χ(x),

iσν(∂ν + ieAν)ψ(x) = mχ(x), (54)

we can represent the latter equation as

iσ̄µ(∂µ + ieAµ)χ(x) = mψ(x). (55)

If now we introduce

γµ =
(

0 σ̄µ

σµ 0

)
, φ =

(
ψ

χ

)
,

then (54) and (55) take the form of the Dirac equation in
the Weyl representation,

(iγµ(∂µ + ieAµ(x))−m)φ(x) = 0, {γµ, γν} = 2gµν .

Thus, one can think that the realization of Îµν by
the matrices of higher rank leads to the relativistically-
invariant equations for higher spins because of

Îµν → Î ′µν = aµλa
ν
ρÎ
λρ.

However, we shall not consider here this possibility. Note
only that the minimal coupling with the electromagnetic
field is replaced by the following requirement: the wave
function ψ should satisfy the gauge-invariant equation (51)
in the presence of an electromagnetic field, where Îµν is
realized by the matrices of higher rank.

6 The classical limit
of the squared Dirac equation

In this section we shall show how (11) and (14) can be
obtained from the Dirac wave equation as a result of the
transition to the classical limit. In particular, we shall look
for the approximate solution of (53), which becomes zero
out of a classical trajectory ξµ(τ) for �→ 0. For these so-
lutions, the bilinear combinations ψ̄α(x)ψβ(x) should have
the δ-function behavior over x− ξ(t). Such a behavior for
the solutions of wave equations (wave packets) is valid at
times 0 < t < t0, where t0 is a duration of spreading for a
wave packet (t0 →∞ at �→ 0).
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Let us demonstrate the above mentioned by considering
a simple example of non-relativistic Schroedinger equation
for a free particle. If the wave function at the moment of
time t = 0 represents the following wave packet of width
σ:

ψ(x, 0) = (πσ)−1/4 exp
{

ip0x

�
− x− x0

2σ

}
,

then the solution of the Schroedinger equation in the co-
ordinate representation has the form

ψ(x, t) ≡ ψξ(x)

=
(πσ)−1/4(

1 + i�t
mσ

)1/2

× exp

{
ip0x

�
− ip2

0

2m�
t− (x− ξ(t))2

2σ
(
1 + i�t

mσ

)
}
,

where p0 and x0 are the particle momentum and space
coordinate at t = 0, and ξ(t) = x0 + v0t, p0 = mv0. The
wave function in the momentum representation is given by

ψ(p, t)

=
( σ

π�2

)1/4

× exp
{
− ip2

2m�
t− i(p− p0)x0

�
− (p− p0)2

2�
σ

}
.

For t� mσ
�

= t0 we have

|ψ(x, t)|2 = (πσ)−1/2 exp
{
− (x− ξ(t))2

σ

}
,

|ψ(p, t)|2 =
( σ

π�2

)1/2
exp

{
− (p− p0)2

�2 σ

}
;

moreover, |ψ(x, t)|2 −−−→
σ→0

δ(x − ξ(t)) and |ψ(p, t)|2 −−−→
�→0

δ(p−p0). Note that in the classical limit, the wave function
ψξ(x) is an eigenfunction of the non-commuting operators
for space coordinate and momentum,

x̂ψξ(x) = xψξ(x) = ξψξ(x), (56)

p̂ψξ(x) = −i
∂

∂x
ψξ(x) = p0ψξ(x).

This fact does not contradict the commutation relation
[x, p] = i� (in the limit of �→ 0 the operators x̂ and p̂ do
commute).

We assume that in the case of relativistic wave equa-
tions the described above situation is also true. The action
functional that results in the squared Dirac equation (53)
has the form

W =
∫ t2

t1

d4xL(x), (57)

L(x) =
1

2m
ψ̄
←−
Dµ
−→
Dµψ − e

2m
ψ̄ÎµνFµνψ − m

2
ψ̄ψ,

where
←−
Dµ =

←−
∂ µ−ieAµ,

−→
Dµ =

−→
∂ µ+ieAµ are the covariant

derivatives and ψ̄(x) = ψ∗(x)γ0.
In order to obtain the dynamic equations (11) and (14)

as the classical limit of the squared Dirac equation, we
consider the following functional Ra:

Ra =
∫

d3x

(
∂L

∂ψ
− ∂µ ∂L

∂∂µψ

)
Baψ. (58)

Here Ba = {1, Îµν , xl, iDµ} are the operators acting on
the field index and space coordinate. Let us now introduce
the indefinite scalar product

(ψ1, ψ2) =
∫

d3xψ̄1(x)ψ2(x).

In this scalar product, the Hermitian conjugate operation
is defined in the standard way:

(ψ1, Aψ2) = (A†ψ1, ψ2),

where A† = γ0A+γ0 (A+ is the Hermitian conjugate oper-
ation in the usual scalar product

∫
d3xψ∗

1(x)ψ2(x)). Note
that all the introduced operators Ba are Hermitian, Ba =
B†
a. It can easily be shown that for two arbitrary operators

A and C, the following formula is valid:

(ψ1, ACψ2)∗ = (ψ2, C
†A†ψ1). (59)

Therefore, the functional R∗
a is of the form

R∗
a =

∫
d3xψ̄Ba

(
∂L

∂ψ̄
− ∂µ ∂L

∂∂µψ̄

)
. (60)

The Lagrangian L is real and bilinear over ψ(x) and ψ̄(x);
see for instance (57). The functionals (58) and (60) go to
zero if ψ(x) and ψ̄(x) satisfy the Euler–Lagrange equation,
which results in the squared Dirac equation. However, in
our next calculations we shall assume that these functions
do not satisfy the Euler–Lagrange equation.

It is evident that (58) can be written in the form

Ra = −∂0

∫
d3x

∂L

∂∂µψ
Baψ (61)

+
∫

d3x

(
∂L

∂ψ
+

∂L

∂∂µψ
∂µ

)
Baψ .

Next, noting that the Lagrangian (57) gives

∂L

∂∂µψ
=

1
2m

ψ̄
←−
Dµ,

∂L

∂ψ
= −m

2
ψ̄ − e

2m
ψ̄ÎµνFµν +

1
2m

ieAµψ̄
←−
Dµ,

one finds

Ra = − 1
2m

∂0

∫
d3xψ̄

←−
D0Baψ

+
1

2m

∫
d3xψ̄

(←−
Dµ
−→
Dµ − eÎµνFµν −m2

)
Baψ.
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Then, according to (60), the functional R∗
a is of the form

R∗
a = − 1

2m
∂0

∫
d3xψ̄Ba

−→
D0ψ

+
1

2m

∫
d3xψ̄Ba

(←−
Dµ
−→
Dµ − eÎµνFµν −m2

)
ψ.

These two formulae result in

Ra −R∗
a ≡ ba

= − 1
2m

∂0

∫
d3xψ̄

(←−
D0Ba −Ba−→D0

)
ψ

+
1

2m

∫
d3xψ̄

(
e[Ba, ÎµνFµν ]

)
ψ

+
1

2m

∫
d3xψ̄

(←−
Dµ

[−→
Dµ, Ba

]
−

[
Ba,
←−
Dµ

]−→
Dµ

)
ψ.

In a similar manner, one obtains

Ra +R∗
a = ba − ca,

where

ca =
1
m

∫
d3xψ̄Ba

(−→
Dµ
−→
Dµ + eÎµνFµν +m2

)
ψ.

Here we have employed the fact that
←−
Dµ = −−→Dµ +

←−
∂ µ +−→

∂ µ. If ψ(x) satisfies the Euler–Lagrange equation with the
Lagrangian (57) resulting in the squared Dirac equation
(53), then Ra = R∗

a = 0, ca = 0, and consequently ba(t) =
0,

d
dt

∫
d3xψ̄

(←−
D0Ba −Ba−→D0

)
ψ (62)

=
∫

d3xψ̄
(
e[Ba, ÎµνFµν ] +

←−
Dµ

[−→
Dµ, Ba

]

−
[
Ba,
←−
Dµ

]−→
Dµ

)
ψ.

In the case of Ba = i
−→
Dk, (62) should be derived separately.

The result is

d
dt

∫
d3xψ̄

(←−
D0−→Dk +

←−
Dk
−→
D0

)
ψ (63)

=
∫

d3xψ̄
(
e
[−→
Dk, Î

µνFµν

])
ψ

+
∫

d3xψ̄
(←−
Dµ

[−→
Dµ,
−→
Dk

]
+

[←−
Dk,
←−
Dµ

]−→
Dµ

)
ψ

(here we have taken into account that
−→
Dµ +

←−
Dµ =

−→
∂ µ +←−

∂ µ).
As well as in the non-relativistic case, let us assume

that the functions ψα(x), ψ̄β(x) represent the wave packets
different from zero only for |x−ξ(t)| � σ1/2 and 0 < t < t0
(t0 is a spreading time of the wave packet, which tends to
infinity at �→ 0; σ is the width of the packet). Therefore,

approximately (the smaller � and σ, the more exactly),
the functions ψα(x), ψ̄β(x) are the eigenfunctions of the
non-commuting operators iDµ and xl,

i
−→
Dµψ(x) ≈ πµ(t)ψ(x),

iψ̄(x)
←−
Dµ ≈ −πµ(t)ψ̄(x), (64)

xlψ(x) ≈ ξl(t)ψ(x), ψ̄(x)xl ≈ ξl(t)ψ̄(x)

(compare to (56)).
If we calculate the commutators in the right-hand side

of (62), then it can be easily seen that the terms linear in
Îµν have the following structure:

Qµν(t) =
∫

d3xψ̄α(x)A(x)ÎµναβC(x)ψβ(x),

where A(x), C(x) are the operators constructed of xl, iDµ.
Let us consider now the calculation of such terms. If we
were in the classical limit, ψβ(x) were the eigenfunctions
of the matrices Îµναβ (as the operators i

−→
Dµ, xl),

Îµναβψβ(x) = Iµν(t)ψα(x), (65)

then the calculation of Qµν(t) should be trivial. However,
Îµναβ are finite-row matrices (with respect to the indices α
and β), which do not commute and, consequently, (65) is
not valid. Therefore, we should act in another way. Namely,
the quantity Qµν(t) can be written in the form

Qµν(t) = A(ξl(t))C(ξl(t))
∫

d3xψ̄α(x)Îµναβψβ(x). (66)

We have employed here the fact that ψ̄α(x), ψβ(x) dif-
fers from zero only for xl ≈ ξl. Let us define Iµν(t) by
the formula

Iµν(t)
∫

d3xψ̄α(x)ψα(x) =
∫

d3xψ̄α(x)Îµναβψβ(x), (67)

which reflects the fact that Iµν(t) is the “average” value
of Îµναβ in the state ψ(x). Then, (66) is of the form

Qµν(t) = A(ξl(t))C(ξl(t))Iµν(t)
∫

d3xψ̄α(x)ψα(x). (68)

This relationship will be used in calculation of the right-
hand side of (62).

We are now in a position to obtain the equations of
motion for point relativistic particles with dipole moments
in an electromagnetic field. Setting Ba = 1 in (62) and
using (64), one finds

π0(t)χ(t) = const, χ(t) =
∫

d3xψ̄α(x)ψα(x). (69)

Let now Ba = xl. Then, noting that[−→
Dµ, x

l
]

=
[
xl,
←−
Dµ

]
= δlµ,
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one obtains from (62)

dξl

dt
=
πl

π0

(we have taken into account (64) and (69)). Next, let us
define the proper time of a particle by the formula

dt
dτ

=
π0

m
. (70)

Then
mξ̇µ = πµ. (71)

In order to find the dynamic equation for Iµν (Ba = Îµν

in (62)) we note that

[Îλρ, ÎµνFµν ] = 2iFσκ(gρσ Îλκ + gλκÎρσ),[−→
Dµ, Î

λρ
]

=
[
Îλρ,
←−
Dµ

]
= 0.

Therefore, according to (64), we have

d
dt
π0(t)

∫
d3xψ̄(x)Îλρψ(x)

= e

∫
d3xψ̄(x)(gρσ Îλκ + gλκÎρσ)Fσκψ(x),

whence bearing in mind (67)–(69), one gets

dIµν

dt
=

e

π0(t)
Fλρ(ξ)(gνλIµρ + gµρIνλ).

Performing here the transition to the differentiation over
τ in accordance with (70), we find finally

İµν =
e

m
Fλρ(ξ)(gνλIµρ + gµρIνλ). (72)

Let us now obtain the equation of motion for πµ. To
this end we address (63), which is an analogue of (62) for
Ba = i

−→
Dk. It is easy to find the commutators entering the

right-hand side of this equation,[−→
Dk, Î

µνFµν

]
= Îµν∂kFµν ,[−→

Dµ,
−→
Dν

]
=

[←−
Dµ,
←−
Dν

]
= ieFµν .

Performing the calculations similar to those that were done
in deriving (72), one gets

d
dt
πk(t) =

e

2π0(t)
Iµν∂kFµν(ξ)− e

π0(t)
πµFµk(ξ),

or according to (70),

π̇k =
e

2m
Iµν∂kFµν(ξ)− eξ̇µFµk(ξ). (73)

Here we have used (71). To reduce this equation to the
relativistically-invariant form, let us return again to the

squared Dirac equation (53). Upon multiplying it by ψ̄
and integrating over d3x, one finds

πµπ
µ = eFµνI

µν +m2.

The differentiation of this relation with respect to τ leads
to

2π0π̇
0 + 2πkπ̇k = eIµν∂λFµν ξ̇

λ.

(in virtue of (14) Fµν İµν = 0). On the other hand, accord-
ing to (73) we have

πkπ̇k =
e

2m
Iµνπk∂kFµν − eπk ξ̇0F0k.

Therefore,

2π0π̇
0 = eIµν(∂0Fµν)ξ̇0 + 2eπk ξ̇0F0k,

whence taking into account that π0 = mξ̇0, one obtains

π̇0 =
e

2m
Iµν∂0Fµν + eξ̇νF0ν .

Hence, this equation and (73) combine into the following
relativistically-invariant equation:

mξ̈ρ = π̇ρ = eFρν ξ̇
ν +

e

2m
Iµν∂ρFµν . (74)

The derived equation along with (72) describes the dynam-
ics of a charged particle with dipole moment in an electro-
magnetic field. The obtained equations (72) and (74) com-
pletely coincide with (11) and (14), which were derived on
the basis of the variational principle for the corresponding
Lagrangian. Within other approaches, the classical limit
of the Dirac equation was considered in [14,18].

In conclusion of this section we would like to empha-
size that the dynamic equations (72) and (74), which have
been derived from the squared Dirac equation as a result
of the passage to the classical limit, are consistent with
the requirement σµν ξ̇ν = 0 (the absence of electric dipole
moment).

7 Conclusion

In this paper we have presented Lagrangian and Hamil-
tonian formalisms for the relativistic dynamics of charged
particles with dipole moments (electric and magnetic) in
the presence of an electromagnetic field. In order to de-
scribe these internal degrees of freedom, we have introduced
the dipole moment tensor σµν and the orthogonal matrix
aµν of four-rotations in the pseudo-Euclidean space, which
is conjugate to the dipole moment tensor. The obtained
equations of motion agree with the results of other authors.
We have also defined a dipole current through the dipole
moment tensor. This current has allowed us to formulate
the differential conservation laws and to find the explicit
expressions for the energy-momentum and angular mo-
mentum tensors of the considered particles. The analysis
of the differential conservation laws has resulted (in a natu-
ral way) in definitions of a relativistic spin as the intrinsic
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mechanical angular momentum and gyromagnetic ratio.
The latter is expressed in terms of the constants entering
the Lagrangian. It has been shown that if a particle has no
electric dipole moment (in this case σµν ξ̇ν = 0), then the
gyromagnetic ratio κ is equal to e/m, which corresponds to
the normal magnetic moment. The introduced matrix aµν
has not only a formal but also a simple physical sense: it
completely specifies the evolution of the dipole moments:

σµν(τ) = aµλ(τ)a
ν
ρ(τ)σ

λρ(0).

We have found the Poisson brackets for the basic dynamic
variables.ThesePoissonbrackets have been essentially used
in the quantization of the obtained equations ofmotion.The
canonical quantization procedure has led to the squared
Dirac equation. In the last section we have formulated
a method for obtaining the classical equations of motion
from the wave equations. It is based on the consideration
of the localized wave packets, which determine a parti-
cle trajectory. Applying this method to the squared Dirac
equation, we have come to those dynamic equations dis-
cussed within the Lagrangian approach. The inclusion of
the gravitational field and non-Abelian gauge fields associ-
ated with the SU(n) group into the proposed Lagrangian
formulation has been considered.
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Appendix A: The dipole moment tensor

Letus show thatΣµν(x) specifies thedensities of the electric
and magnetic dipole moments. To this end we address the
Maxwell equations,

∂νFµν = −4πjµ, ∂µFνλ + ∂λFµν + ∂νFλµ = 0 , (A.1)

where jµ(x) is defined by (1)–(4). The first equation from
(A.1) can be written in the form

∂ν(Fµν + 4πΣµν) = −4πj(e)µ . (A.2)

Setting here µ = 0 and ν = k one obtains

∂

∂xk
(Ek + 4πΣ0k) = 4πj(e)0 , Ek = F0k,

whence the quantity Ek(x) + 4πΣ0k(x) should be inter-
preted as the electric displacement vectorDk(x) andΣ0k(x)
as the density of the electric dipole moment Pk(x) ≡ dk(x),

dk(x) ≡ Σ0k(x) =
∫ ∞

−∞
dτσ0k(τ)δ(x− ξ(τ)).

Performing here the integration over τ we have

dk(x) =
σ0k(τ)
ξ̇0(τ)

δ(x− x(t)), t = ξ0(τ).

Thus, the quantity σ0k(τ)/ξ̇0(τ) represents the electric
dipole moment of a moving particle.

Let us nowdemonstrate thatΣkl(x) specifies thedensity
of the magnetic dipole moment. For this purpose we set
µ = l in (A.2),

∂0(Fl0 + 4πΣl0) + ∂k(Flk + 4πΣlk) = −4πj(e)l .

Since Fl0 + 4πΣl0 = −Ek − 4πPk and Flk = −εlksBs (Bs
is real magnetic field),

− ∂

∂xk
(−εlksBs + 4πΣlk) =

∂Dl

∂t
+ 4πj(e)l .

The comparison of this equation to rotH = ∂D
∂t + 4πj(e)

results in
−εlksBs + 4πΣlk = −εlksHs,

whence
Hs = Bs − 4π

1
2
εslkΣlk.

Therefore, the quantity 1
2 εslkΣlk should be identified with

the magnetic moment density Ms ≡ ms(x),

ms(x) =
1
2
εslkΣlk(x) =

1
2
εslk

∫ ∞

−∞
dτσlk(τ)δ(x− ξ(τ)),

or

ms(x) =
1
2
εslk

σlk(τ)
ξ̇0(τ)

δ(x− x(t)), t = ξ0(τ).

Hence, σ23(τ)/ξ̇0(τ), σ31(τ)/ξ̇0(τ), and σ12(τ)/ξ̇0(τ) are
the x, y, z components of the magnetic dipole moment of
a moving particle.

Appendix B: Equations of motion
in gravitational
and non-Abelian gauge fields

Here we are concerned briefly with the generalization of
the developed approach to the case of a charged point
particle with dipole moment interacting not only with an
electromagnetic field but also with a gravitational and
non-Abelian gauge fields. The possibility of including non-
Abelian gauge fields was discussed in [19]. The starting
point of our approach is the following Lagrangian:

L = Lk −H, (B.1)

with its kinematic partLk (this part determines the Poisson
brackets for the basic dynamic variables) and Hamiltonian
H (with respect to the proper time τ),

Lk = −pµξ̇µ − 1
2
Iika s

i ȧks + 2iqaSpTau̇u+, (B.2)

H = − 1
2m

πµπµ +
1

2m
IµνFµν . (B.3)
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Here

πµ = pµ − eAµ − gqaAaµ −
1
2
IikA

ik
µ , (B.4)

Fµν = eFµν + gqaF
a
µν +

1
2
IikRikµν ,

where

Fµν = ∂µAν − ∂νAµ,

F aµν = ∂µA
a
ν − ∂νAaµ − gf a

bc AbµA
c
ν

(B.5)

(Rikµν is the curvature tensor). The non-Abelian charge
qa (a = 1, . . . n2 − 1) specifies the interaction of “colored
quarks” and defines the currents Jµa (x), which enter the
Yang–Mills field equations,

DµF νµa = gJνa , Jµa (x) =
∫ ∞

−∞
dτqa(τ)ξ̇µδ(x− ξ(τ)).

The quantities Aµ, Aaµ, and Aikµ are respectively the elec-
tromagnetic, SU(n), and Lorentz connections. The unitary
matrix uwith detu = 1 (see (B.2)) depends on n2−1 “gen-
eralized coordinates”, which are conjugate to the n2 − 1
“generalized momenta” qa. Ta are the generators of the
fundamental representation of the SU(n) group.

In order to explain the structure of the third term in
(B.2) we consider some properties of the quantity ω(U) =
ω+(U) (U ∈ SU(n)),

ω(U) = iUU̇+, U̇ =
dU
dt
.

Let us introduce the notation

Ra(U) = SpTaω(U).

Let v ∈ SU(n). Then, if v does not depend on t, then

Ra(vU) = SpTavω(U)v+.

Noting that the Hermitian matrix v+Tav with zero trace
can be expanded in the generators Tb of the fundamental
representation of the SU(n) group,

v+Tav = u b
a (v)Tb,

we have
Ra(vU) = u b

a (v)Rb(U),

where u b
a (v) is the orthogonal matrix. Thus, under the

transformations U → vU , the quantity Ra(U) is trans-
formed as a SU(n) vector in the adjoined representation.
If qa is also transformed as a vector, then qaRa is a scalar.
Therefore, the quantity iqaSpTaUU̇+ is invariant with re-
spect to the SU(n) transformations and can be used in the
construction of the Lagrangian for free particles. Similarly,
one can prove that the second term in the Lagrangian (B.2)
is invariant with respect to four-rotations.

As dynamic variables in the Lagrangian L we choose
the following pairs: (pµ, ξµ); (aks, Iik); (qa, u). It is clear

that the Poisson brackets among the dynamic variables
belonging to different pairs are equal to zero. The non-
trivial Poisson brackets inside of the pairs are determined,
according to (B.2), by

{pµ, ξν} = δνµ, {Iik, als} = ai sδ
k
l − aksδil ,

{Iik, I ls} = ηklIis + ηisIkl − ηilIks − ηksIil, (B.6)

{qa, qb} = f c
ab qc, {u, qa} = −iTau,

where ηik is the flat space Minkowskian metric.
In the tetrahedral formalism, the Lorentz tensors Al...

can be related to the world tensorsAµ... byAl... = bl µA
µ...,

where bl µ(x) is a tetrahedral field. Now the metric tensor is
defined by gµν(x) = bl µ(x)blν(x). The Lorentz connection
Aµik is related to the Christoffel symbols and field bl µ(x)
by the formula

Γµνλ = b µ
l (∂λbl ν +A l

kλb
k
ν).

As a result the following Poisson brackets are obtained
from (B.4)–(B.6):

{Iµν , Iλρ} = gνλIµρ + gµρIνλ − gµλIνρ − gνρIµλ,

{πµ, πν} = −eFµν − gqaF aµν −
1
2
IλρRλρµν ,

{πµ, ξν} = δνµ, {πµ, Iνλ} = IλρΓ νρµ − IνρΓλρµ,
{πµ, qa} = gf c

ab A
b
µqc, {qa, qb} = f c

ab qc.

We do not write the Poisson brackets containing the vari-
ables aik and u because these variables, being cyclic ones,
do not enter the Hamiltonian.

The equations of motion for the dynamic variables are
obtained from the Hamiltonian equations ṙ = {r,H} (r is
a dynamic variable) and have the form

ξ̈ρ + Γ ρλσ ξ̇
λξ̇σ (B.7)

=
1
m
gραξ̇µ

(
eFαµ + gqaF

a
αµ +

1
2
IγκRγκαµ

)

+
1

2m2 g
ραIµν

×
(
eDαFµν + gqaDαF aµν +

1
2
IγκDαRγκµν

)
,

İµν + ξ̇ρIµλΓ νλρ + ξ̇ρIλνΓµλρ (B.8)

=
1
m

(gνλIµρ − gµλIνρ)(eFλρ + gqaF
a
λρ + IσηRσηλρ),

q̇a − gf c
ab A

b
ρqcξ̇

ρ =
g

2m
f c
ab qcI

µνF bµν . (B.9)

The covariant derivative Dα is defined by

DαGaµν = ∂αG
a
µν −GaµλΓλνα −GaλνΓλµα + gf a

cb AbαG
c
µν ,

Dαψ(x) = (∂α + ieÃα)ψ(x),
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where Gaµν is a world tensor with respect to the indices µ,
ν, and SU(n)-vector with respect to the index a; ψ(x) is
a bispinor, and

Ãµ(x) = eAµ(x) + gTaA
a
µ(x) +

1
2
ÎikA

ik
µ .

In the presence of only an electromagnetic field the de-
rived equations coincide with (11) and (14). The dynamic
equations (B.7) and (B.8) can also be found from the La-
grangian

L =
√−g

(
1

2m
ψ̄
←−Dµ−→Dµψ − 1

2m
ψ̄IµνFµνψ − m

2
ψ̄ψ

)

as a result of the transition to the classical limit (see Sect. 6).
This Lagrangian corresponds to the squared Dirac equation
in which the external gravitational field and non-Abelian
gauge fields are included (Fµν is defined by (B.4) and
(B.5)).
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