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Abstract. The Lagrangian and Hamiltonian formulations for the relativistic classical dynamics of a charged
particle with dipole moment in the presence of an electromagnetic field are given. The differential conservation
laws for the energy-momentum and angular momentum tensors of a field and particle are discussed. The
Poisson brackets for basic dynamic variables, which form a closed algebra, are found. These Poisson brackets
enable us to perform the canonical quantization of the Hamiltonian equations that leads to the Dirac wave
equation in the case of spin 1/2. It is also shown that the classical limit of the squared Dirac equation
results in equations of motion for a charged particle with dipole moment obtained from the Lagrangian
formulation. The inclusion of gravitational field and non-Abelian gauge fields into the proposed formalism

is discussed.

1 Introduction

The study of relativistic dynamics of charged particles with
internal degrees of freedom (spin) originates from [1,2].
Later, the equations of motion for such particles in an ho-
mogeneous electromagnetic field were derived by general-
ization of the non-relativistic equations of motion for coor-
dinate and spin of a particle to the relativistic case [3]. An-
other approach for obtaining the relativistically-invariant
equations of motion for charged particles with internal de-
grees of freedom is discussed by considering complex par-
ticles [4]. The definition of the covariant center of energy
is the key problem in this approach.

The Lagrangian formulation for the relativistic motion
of a charged particle with spin is of special interest. The
main advantage of such an approach is that the knowledge
of a suitable Lagrangian allows us to obtain results without
any additional assumptions. However, the construction of
the Lagrangian formalism for charged particles with spin
needs the introduction of additional dynamic variables,
which are conjugate to the components of relativistic spin
described by an antisymmetric tensor [5-9]. Here some au-
thors use singular Lagrangians following the approach sug-
gested by Dirac for constrained Hamiltonian systems [6, 8]
(in this case a free Lagrangian is parametrically invariant).
However, the alternative formalism based on non-singular
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Lagrangians is also often used [5,7,9] (the free Lagrangian
is not parametrically invariant).

The present paper concerns the construction of con-
sistent Lagrangian and Hamiltonian formulations for the
relativistic dynamics of charged particles with dipole mo-
ment in an electromagnetic field. As a starting point of
our consideration we introduce the dipole moment tensor
and define the currents associated with a charge of particle
and its dipole moment. These definitions are given in ac-
cordance with Maxwell’s equations. The main idea of the
offered Lagrangian approach consists in the introduction of
an orthogonal matrix for the rotations in a four-dimensional
pseudo-Euclidean space. This matrix determines a funda-
mental representation of the Lorentz group. It is specified
by six independent parameters, which are taken by us to be
generalized coordinates. The antisymmetric dipole moment
tensor is also characterized by six variables, which play the
role of generalized momenta. Using this idea we construct
a relativistically-invariant Lagrangian, which leads (in the
formalism of proper time) to the relativistically-invariant
equations of motion for the basic dynamic variables (four-
position and four-momentum of a particle, tensor of dipole
moments, and matrix of pseudo-Euclidean rotations).

We also discuss the differential conservation laws for
the field and particles and obtain the explicit expressions
for the energy-momentum and angular momentum tensors
of a charged particle with dipole moments. The analysis
of conservation laws enables us to introduce, in the clas-
sical case, a tensor of intrinsic angular momentum (spin).
The relationship between this tensor and the dipole mo-
ment tensor is given by the gyromagnetic ratio expressed
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through the quantities entering the Lagrangian. We show
that if the particle has no electric dipole moment, then it
possesses a normal magnetic moment that corresponds to
the gyromagnetic ratio, equal to e/m.

‘We would like to note that the introduced matrix of four-
rotations has not only a formal but also a simple physical
sense: it specifies the evolution of the dipole moment tensor
with respect to proper time. This evolution represents a
rotation in pseudo-Euclidean space.

We also present the Hamiltonian formulation of the
problem. The obtained Hamiltonian of relativistic par-
ticles with dipole moments does not contain the above
matrix of four-rotations (it represents a cyclic variable).
The found Poisson brackets for the basic dynamic vari-
ables form a closed algebra. The developed Hamiltonian
approach makes it possible to perform the canonical quan-
tization of the obtained Hamiltonian equations. In the case
of spin 1/2 this quantization results in the squared Dirac
wave equation. We show also that the classical limit of
the squared Dirac equation gives the previously obtained
equations of motion for a charged particle with dipole mo-
ment. In the appendix we generalize the developed for-
malism to cover motion in gravitational and non-Abelian
gauged fields.

2 Relativistically-invariant Lagrangian
of point dipole moments

In field theory one can obtain the field equations as well
as the equations of motion of particles, by varying an ac-
tion functional with respect to dynamic variables. In this
section we shall construct a relativistically-invariant action
functional, which describes the interaction of particles pos-
sessing dipole moments with an electromagnetic field.

To begin with, we would like to remind the reader that
the four-vector j l(f) (z) of the electric current density created
by a particle of charge e is determined by

i (z) = e/oo dré,, (1)d(x — £(7)). (1)

— 00

Here &,,(7) is the four-trajectory of a particle (7 is a pa-
rameter; the dot means derivation with respect to 7; Greek
indices take the values 0, 1, 2, 3). The four-vector (1) of the
electric current density satisfies the differential conserva-
tion law 95\ (z) = 0.

If a point particle has dipole moment, then their densi-
ties can be specified by means of the antisymmetric tensor
XH(z) of rank two

sa) = [ Tdro (), (@)

where o#¥(7) is the dipole moment tensor. In addition,
the components Yo () = di(z) are the densities of the
electric dipole moment and X'g; () = egsms(x) specify the
densities of the magnetic dipole moment (see Appendix A).
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Hence, the four-vector of the current density, which is asso-
ciated with the dipole moment of the particles is defined by

o0

J\0 (@) = 0 Sy () = 0 / dro (T)d(x = £(m); (3)

—00
moreover, O* jftd) (x) = 0. The four-vector of the total cur-
rent density created by a charged particle with dipole mo-
ment is given by

Ju(@) = G5 (2) + i (@), (4)

For particles which have no internal degrees of freedom
and interacting with an electromagnetic field the action
functional is of the form

0*ju(x) = 0.

W = Wf + Wp + I/I/inta (5)

where

1

ta
~Ton J, d*azF,, (z)F" (z), d'z=dtd®*z (6)

1

W =

is the part of the action functional that corresponds to the
free electromagnetic field F,,(z) = 0,A,(x) — 0, A,(x)
(Au(x) is the four-potential),

ta
Wit = — / oA, (2)5" (@),

ty

(7)

describes the interaction of particles with an electromag-

netic field, and W, = —m f: dn/éué“ is the part of

the action functional for free particles (m is the parti-
cle mass). Such a form of W), is parametrically invariant
(r — 7 = 7/(7)) and leads to the fact that the gener-

alized momentum p* = faLp/é)éu = méH ([ ExEN (Lp is
the Lagrangian corresponding to W) lies on the mass shell
ptp, = m?. This circumstance does not allow us to con-
sider the p* as independent variables when we construct
the relativistically-invariant Hamiltonian approach and the
corresponding quantum theory (compare to the similar sit-
uation in the theory of gauge fields). Therefore, as opposed
to the usual theory, we need to break the parametric invari-
ance of W;,. To this end let us choose W, = =3 [™* dr¢, @
We shall see further that such an action functional results
in the correct equations of motion.

However, if a particle has internal degrees of freedom
(specified by o#"), then an appropriate part of the action
functional should be added to W,. In order to find it let us
draw the analogy to spin variables [10,11]. In the case of spin
dynamics three angles 0y (¢) (the generalized coordinates),
which determine the matrix a;,(6) of three-dimensional
rotations, correspond to three spin variables Sy (the gen-
eralized momenta). As a result, the Lagrangian describing
the dynamics of free spins is written as Ly = —S;w;, where
w; = 2e4a(a(t)a(t))w is the so-called Cartan form and a(t)
is the transpose matrix a(t).

In the case of the relativistic dynamics of dipole mo-
ments, six parameters 6,(t) (the generalized coordinates),
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which determine the orthogonal matrix a,,, () (awal‘)‘ =
02) of four-dimensional pseudo-Euclidean rotations, are
associated with the six variables o#¥ (the generalized mo-
menta). Therefore, using the analogy to spin variables, let
us write the Lagrangian corresponding to the dipole mo-
ment as Lg = —ﬁaw%*a” (k is a certain constant, the
physical meaning of which we shall clarify below). Thus, we
obtain the following action functional for free relativistic
particles with dipole moments:

T2 m . - 1 w
W, = _/7-1 dr (2@5” + ﬂof wW) , (8)

where w,,, = au’\dy,\ is the right Cartan form.
Let us transform the expression for Wi,;. Substitution
of (4) into (7) yields

T2 . 1

Wint - _/ dr (eAM(€)£H + 2FMV(§)O-“‘V> 3
T1

where £°(71) = t; and £%(») = t5. Hence, the total ac-

tion functional for the particle with dipole moment in an

electromagnetic field can be written as

W =W, + Wiy = / drL(7), (9)

T1

where the Lagrangian L(7) is given by

.o 1 :
L7) = =56 = 5ol — eAu(©)8"

1 ’
_§F;w(§)0'“/~ (10)
Having this Lagrangian we shall derive the equations of
motion for charged particles with dipole moments in an
electromagnetic field.

3 Equations of motion for point dipole
moments and differential conservation laws

In this section we employ the principle of the stationary
action in order to find the equations of motion for the basic
dynamic variables. Varying the obtained action functional
(9) and (10) with respect to the independent variables
EH oM oM and taking the variations of these quantities
as zero at the boundaries of the corresponding limits of
integration, one finds

méu = eFHu(g)éV + %UUA@MFVA(g)a (]‘1)
- (gl’)‘a”p — JuAaup)d)\p, (12)
Q" = —kFM(€)ay”. (13)

Let us explain the derivation of (12). The variation of
the Lagrangian (10) with respect to a*” is given by

0oL = %f‘)au)‘(a“yduk —d"a,y — a""ayy).
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We have omitted the term (d/dr)(c#8a,a,) because it
does not contribute to the variation of the action functional.
Next using the orthogonality of a*” (a,\a”" = 47), one gets

0L = %&z#/\aﬁ(a“"a””aun —oPa""a,, — oPH).
Since 6a#/\ap)\ is an arbitrary quantity antisymmetric in
the indices p, p, the variational principle results in (12).

The obtained relativistically-invariant equations of mo-
tion describe the dynamics of a point charged particle with
dipole moment in an electromagnetic field. Eliminating a»,
in (12), we get

5 =k (P F () — o F (6))

Equations (11) and (14) represent the closed system of dif-
ferential equations for £#, o#¥. Note that (13) can be written
as wy, = —kF),,. Thus, the electromagnetic field taken at
the point of presence of the particle coincides with the
right Cartan form wy,, (see its definition above). The dy-
namic equations (11) and (14) allow us to find the following
integrals of motion with respect to the parameter 7:

(14)

I = mg”é# - JHVELU’ I, = 50-#«1’0—#”7

I3 = UWU,\,JE“”)"’
(I, = Iy = I3 = 0). Equations (13) and (14) for " and
oM give two other integrals of motion,

A
IS:G’N

I, = %a‘“’aw\, a,ot, Iy=1I5=0.
Here we have used the antisymmetry of F#*¥ and o*¥.

The integral of motion I; determines the proper time
parameter 7 similar to how f ué # =1 determines the proper
time in the case of the usual Lorentz equations of motion.
The integral of motion I, reflects the fact that a*”(7)
evolves as an orthogonal matrix. Finally let us give inter-
pretation to I5. Since the transformation z,, — :EL = au,x”
preserves the lengths of vectors and angles between them,
the relation o"¥ (1) = a>\”(7')@,]‘(7’)(%”(0)7 being a conse-
quence of Iy, shows that in the “spin” space the dipole
moment tensor o#” (1) evolves like a “four-solid”.

Having the equations of motion we can formulate the
differential conservation laws for the energy-momentum
and angular momentum tensors. We start from the energy-
momentum conservation law. According to the action prin-
ciple §(Wi+Wint) = 0 (see (6) and (7)), the electromagnetic
field F},, satisfies the Maxwell equations:

8”FDH = 4nj,, 8HF1/A + 8)\FIW + 8VF,\M =0, (15)
where the total current density j,(x) is given by (1)-(4).
These field equations lead to the following formula:

8, TH = —FMj, (16)

where

1 1
T (2) = - <—F“pF”p + 4g’“’Fp,\Fp)‘) (17)

T
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is the symmetric (T*¥ = T"H) energy-momentum ten-
sor of the electromagnetic field and g"” is the flat space
Minkowskian metric. The relation (16) can be transformed
into the following differential conservation law:

0,(TH" +T™) = 0. (18)
To this end we use the simple formula, which follows from
(3) and (15),

1
Frgld — pregrs = 9NFR 5,,) + 5 D0 F,

Then bearing in mind also the definition of X, (x) and

jl(,e) (z) and using (11), one finds

ey " drEy (€0 (1)6(x — £()

s [ " drs(e — €(r) (19)

whence we come to the differential conservation law (18),
where

T () = [ T At ()8 — £(7)), (20)

() = P4 (€)™ +ménér.

The quantity 7'#¥(x) should be interpreted as the energy-
momentum tensor of a charged particle with dipole mo-
ment interacting with an electromagnetic field. Note that
t, /(1) = I. Since the particle proper field diverges on its
four-trajectory, the expression for t*¥ as well as (11) and
(14) require, generally speaking, the renormalization pro-
cedure if F),, is the total electromagnetic field including
the particle proper field.

Let us now obtain the differential conservation law for
the total relativistic angular momentum tensor. The an-
gular momentum tensor of the electromagnetic field is de-
fined by

MHP(z) = 2? TP (z) — 2 THP (z), (21)
whence according to (16), we have
OpMHP = —gh FVP g, + " F'Pj,.
Similar to the previous calculations this relation can easily
be transformed into the differential conservation law for
the total angular momentum tensor,
Op(MHMViP 4 M'HViP) = (. (22)

Indeed, noting that
8PM/Lv;p — _8p/ dT(glLtVP _ €l’tltp)(5($ - 5(7'))

+% /OO dre"H(1)é(x — &(7))

— 00
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(we have used here (19), (20) and (14)), we come to the
differential conservation law (22), where

3o(a) = [ drmie (o - g(r)) (23)
m/zu;p(T) _ €/Ltup _ Evtp,p + I,uug'p, W = Zghv.
K

The quantity M'#"? should be interpreted as the angular
momentum tensor of a charged particle with dipole mo-
ment interacting with an electromagnetic field. Moreover,
the first two terms in (23) represent the orbital angular
momentum tensor, whereas the third term is the intrinsic
(spin) angular momentum tensor. Therefore, the quantity
should be treated as the gyromagnetic ratio. Note that the
quantities t#PE 01 miviPg » specify the four-vector of momen-
tum and four-tensor of the angular momentum of a particle
in an electromagnetic field.

In the obtained differential conservation laws (18) and
(22), the tensors TH¥ | M#i? are defined only by an electro-
magnetic field. These quantities given by (17) and (21) have
an unambiguous interpretation. The tensors T'#¥, M'HViP
are associated with particles interacting with an electro-
magnetic field (see (20) and (23)). The components TH% +
T'"0 can be treated as the density of energy-momentum
(t*¥ is not symmetric). Then the first term in mt* =
(grtve — vty 4+ T “”f" determines uniquely the orbital
angular momentum, whereas the second one describes the
spin angular momentum. In the field formulation, it is al-
ways possible to attain the symmetric form of the total
tensor TH”. Then MH*VP = xFTVP — x¥THP. However, in
this case, it is difficult to extract the orbital angular mo-
mentum and spin angular momentum from M#¥*. For
example, in the monograph [12], only the procedure of the
extraction of the spin angular momentum is considered on
the basis of the Dirac equation for free particles. Note that
the canonical and symmetric tensors of energy-momentum
result in the same values of the total energy, momentum,
and orbital momentum.

In the usual formulation of general relativity it is neces-
sary to use the symmetric energy-momentum tensor. How-
ever, in its modified formulation, which takes into account
the effect of torsion, the canonical (not symmetric) energy-
momentum tensor should be used [13].

Usually, the elementary particles have only a magnetic
dipole moment (the electric dipole moment is absent). This
means that the components ¢% are zero in the frame of
reference in which a particle is in rest. Since the quantity
0‘“’51, represents the four-vector, which is zero in the frame
of reference where é” = (0,0,0, éo), the relativistically-
invariant condition, which reflects the fact of the absence
of electric dipole moments, can be written in the form [7,14]

oME, = 0. (24)

In order to show the consistency of the constraint (24)
with the equations of motion, let us differentiate it with
respect to 7 and use (11) and (14). As a result, one finds

d v v € - v
7 (76 = eVt (5= ) 06 FY
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1
—‘F%UMVU)\pauF)\/,.

Therefore, as it can be easily seen, the constraint (24) is
consistent with the dynamic equations (11) and (14) for a
homogeneous (slowly varying) field and gyromagnetic ratio
k = e/m (the speed of light ¢ = 1). The gyromagnetic ratio
k = e/m corresponds to the normal magnetic moment. In
the general case k = ge/2mec so that the magnetic dipole
moment u = khS, where g represents the gyromagnetic
factor, and S is the spin of a particle. The consistency of
(24) with the dynamic equations in the case of a specific
inhomogeneous field is discussed in [14].

As we have shown, the obtained set of equations (11)
and (14) does not describe the dynamics of particles with
an anomalous magnetic moment. This is due to the fact
that the requirement o#”¢,, = 0 is not consistent with the
equations of motion. Therefore, in order to describe the
dynamics of particles with an anomalous magnetic moment,
we use the method of Lagrangian multipliers. As a result
the Lagrangian (10) is of the form

.o 1 :
L7) = =56 = 5ol — edu(©)8"

1 ., o
_§Fuu(§)0# = Apot&y, (25)
where the A,, are the Lagrangian multipliers. The variation
of the action functional (9) with this Lagrangian over A,

&, Oy Gy leads to the following set of equations:

oE, =0, (26)

mé" 4t = eF1EY + %J)‘VG“FA,,, (27)

g = (" a" — oM a"P)ay, (28)

Qpy = —"W}\u(FM - éz\Au + éMA/\)’ (29)

where n#* = —g"” A, ; moreover, n“é# = 0. The elimination

of @y, in (28) results in the following equation for o#”:

5 = R FY — 0PN €~ E).(30)
The quantity n* = —o"” A, entering the closed system of

dynamic equations (27) and (30) can be found as a result

of multiplication of (30) by &,,

d . .
—(0"&,) = "¢,

dr
oM FRE, + € — E16n”)

+K’(U’L)\FU/\€'V -
whence taking into account the requirement (26) and the
definition of n*, one finds

i (51/ B K/é)\FI/A)OVH ge
nt = — , k= .
KEVEy 2m
Note that the dynamic equations (27) and (30) agree with
those derived in [5,7]. However, the authors of [5] used

(31)
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the requirement o"”(p, — eA,) = 0 (p, is the canonical
momentum) instead of o#*¢, = 0. As we shall show the
latter requirement follows from the classical limit of the
squared Dirac equation. The dynamic equations (27) and
(30) along with (31) lead to the following relation, which
determines the parameter 7:

.o 1
gﬂgﬂ =1+ 7UV)\F1/)\~
m

Let us show that (27) and (30) are in correspondence
with Bargmann—Michel-Telegdi (BMT) equations in the
case of weak and homogeneous electromagnetic fields. In
doing so, we introduce the Pauli-Lyubanskii spin vector,

1 .
wh = ﬂe“”"ay,\fm (32)
whence )
Oy = ne#mpf)‘w”. (33)

Using (30), (32) and (33), one finds

wh = H(éuéuwAF)\V - éuéuw)\F)\#) + (SVwN - équ)gy.
Here we have employed the fact that § pwh = 0.In the linear
approximation in the field F,, and zeroth approximation
in the gradients of the electromagnetic field, the latter
equation along with (27) take the form

mgh = eFh,E, (34)
: e S v v
wh = (H— E)g EurE\Y — kw"F M,
ge
o (35)

We have neglected n* because this quantity contains the
gradients of an electromagnetic field and the terms non-
linear in F),,. The obtained equations (34) and (35) rep-
resent the BMT equations [3].

In conclusion of this section we would like to note that
in the weak-field limit and with small inhomogeneities the
quantity n*, according to (27) and (31) is defined as

1 .
ot == (3 — n) FyAf)\O'UM.
K \m
In the case of a normal magnetic moment (k = e¢/m), n#*
becomes zero and (27) and (20) coincide with the equations
of motion (11) and (14).

4 The Hamiltonian approach

We are now in a position to construct the Hamiltonian
approach and to obtain the Poisson brackets for basic dy-
namic variables. Following the conventional rules let us
introduce the canonical four-momentum p#, which can be
written according to (10) as

P = - 08 = mét 4 e (6)

%, (36)
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Then the Lagrangian (10) becomes L = Ly — H, where Ly
is its kinematic part linear with respect to derivatives of
the dynamic variables ¥, a,, and H is the Hamiltonian,

1
H = —%(p” - eA“(f))(pM - eAu(f))
1
+§U#UFMV(§)' (38)

Here &4, p*, a*¥, " are the dynamic variables; moreover,
au is a cyclic variable (it does not enter the Hamiltonian
(38)).

The Poisson brackets are determined by the kinematic
part structure of the Lagrangian. The matrix au)‘ (0) de-
pends on six parameters (four—rotations) which are conju-
gate to the six variables ¥ = —cg”". Let us denote them
through 6, (a =1,...6) assuming 6, = 6, at p < v and
0, = —0,, at u > v. As aresult the kinematic part of the
Lagrangian is of the form

. 1 .
L= 1€ = 53" By (39)
where
y 1 y v o 00,0
X = %aApRﬁp, Ry, = ay 69:,, (40)

As it can be easily seen from the structure of (39), the
non-trivial Poisson brackets have the form
.63 = 0, (™0} = 60) = 846 — 85a%. (41)
Having obtained the second expression from (41) we
are able to find the Poisson brackets for o#¥, a**. First of
all, since {0,,,,,0x,} = 0,

{aw,axp} = 0. (42)
Next, noting that (see (40) and (41))
S4) = R0 O} = o 0™ B }RYS,  (43)
or
g " Do G = 85, — %
one obtains
%{0‘“’,%0} = a", 0, —a”, 0k (44)

In order to find {o"**,0**} we employ the fact that
{x%,x*} = 0 with x* = (1/k)R¢c® (b = pv at p < v).
Then taking into account (42) we have

1 a _C
0= —Q{RCJ , Rbo!)

= (R“R {0°, 0%} + RYo“{R%, 0}
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+R%oC, RZ}) .

The use of (43) results in

a a c aRd d aRg
R{O’ R}O’ —R{ 9[ 69 IiaeaO'd.
Therefore,
L papb e g ORY  ORY\ 4
HRCRd{a }+<80 a6, )’ =0.
Noting that
ORy ORy 94, da,n  Oa,) Dy
a6, 06, 90, 06, a6, 96,
T pa b o pa b —
9" Ry, Ry, — 9" Ry, Ry, d= v,
we obtain
1 > g a nv
ERgRg{aaad} = —g" R} Ry o™

The right-hand side of this expression should be reduced to
an antisymmetric form with respect to the indices p, 4 and

o, v (in doing so we need to bear in mind that R*, = —R® ).
g i wp

The result is

1 {O_au) o_f@u} _ gwsa_au gmco_uu g;w oK —i—gUVO';m. (45)

K

The Poisson brackets (44) and (45) can be written in terms
of I = (1/kr)oH:
{I" aps} = a0, — a”.0h,
{IU}L, Inu} — g,u/-cjdl/ _ gonI;Lu _

(46)
gpulaﬁ + gouI,un.

Note that the second Poisson brackets looks like the commu-
tation relation for the infinitesimal operators of the Lorentz
group (see the next section).

The Hamiltonian equations of motion for the basic dy-
namic variables are of the form

g ={e" HY, p'={p" H},

o ={o" H}, a" ={a" H}. (47)
It is easy to prove that these equations coincide with (11)-
(13).

5 Quantization of the equations of motion
for point dipole moments

In this section applying the Dirac procedure, we consider
the quantization of (11)—(13) written in the Hamiltonian
form (see (47)). The quantization for the spin variables
on the basis of the Schwinger dynamic principle [15] is
discussed in [16].

When constructing the quantum theory, the dynamic
variables &# , Pt I*" should be replaced by the correspond-
ing operators f” pH, I (these variables form a closed
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algebra, whereas a*” is a cyclic variable). Next, in order to
obtain the equations of motion for these operators, we need
(according to Dirac) to replace in (47) the Poisson brackets
by commutators {..., H} — —i[..., H] (the Hamiltonian
is given by (38) and I*” = o/ /k). As a result the equa-
tions of motion in Heisenberg’s representation with respect
to the parameter 7 have the form

ﬁ#:—i[ﬁﬂ,f{], é#:_i[é#ag]a IAHV:_i[IAHVaIA{];
(48)
moreover, the dynamic variables meet the following non-
trivial equal-time commutation relations (see (41) and

(46)):
_i[ﬁuvéV] = 557
—i[fA'LL7IAKV] — g”KfAy

(49)
_ g)\nfuu + g)\yj;u-c _ g,uuf)\ﬁ.
In addition, the first one coincides with the permutation
relation for the generators of the Lorentz group. In this
representation, the state vector ¢ does not depend on T,
0y _
1= =
In the Schroedinger representation with respect to the
parameter 7, the above operators do not depend on T,
whereas the state vector (1) satisfies the Schroedinger

equation iag—@ = fh/}(T). Let us choose its stationary

solution: ¥(7) = e 1Ty,

Hi = e

This solution corresponds to the particle “energy” € when
the Hamiltonian H does not depend on 7, € = H|,; o =
—m/2 (we consider that a particle is out of the field action at
T — —00; moreover, f“fp = 1). Thus, taking into account
(38), (50) takes the form

(50)

{0 = eA(€) (b — eA,u(€))

—e " Fu (@ —m? @ =0. (1)

Let us take the realization of él‘, p* by means of the
multiplication operators z* and the differential operators

io*,
& —
If we now take the realization of /#” as I** = 0in (51), then

we come to the Klein—-Gordon equation in the presence of an
electromagnetic field, which corresponds to scalar particles,

{(0" + ieA*(2))(0,, — ieAu(z)) + m*} ¥(x) = 0.

pt — 10",

In order to obtain the realization of the operators I*¥
for spin equal 1/2 we should seek the solution for 7#” in the
class of double-row matrices. This solution is of the form

juu — (5M0,y _ 5”0“),

(52)

N

where ot = (0¥ = 1, ¢!, 02, 03) are the Pauli matrices and

oM = (JO, —ol, 702, 703). Therefore, in the considered
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representation of the dynamic variables, the wave function
1 is a two-component function of z, 1) — 1, (). It satisfies
the squared Dirac equation [17]:

{(aﬂ +ieA") (D, +ieA,) + el F,, + mz} Y(x) = 0.
(53)
Noting that

1 _ _ _
5(0“0” —g¥ct) =agta” — g,

this equation can be written, according to (52), in the form
{m* +&"0" (0, +ieA,) (9, +ied,)} ¥(z) = 0.

Introducing next a new field x(z),

i0" (0 +ieAy )Y (x) = mx(z), (54)
we can represent the latter equation as
ig" (0, +ied,)x(z) = my(z). (55)

If now we introduce

_ (0" _ (¥
=) = ()

then (54) and (55) take the form of the Dirac equation in
the Weyl representation,

(" (9u +1edu(x)) —m)p(x) =0, {¥",7"} = 2¢"".

Thus, one can think that the realization of Imw by
the matrices of higher rank leads to the relativistically-
invariant equations for higher spins because of

v — ' = at\a” 1.

However, we shall not consider here this possibility. Note
only that the minimal coupling with the electromagnetic
field is replaced by the following requirement: the wave
function v should satisfy the gauge-invariant equation (51)
in the presence of an electromagnetic field, where Im s
realized by the matrices of higher rank.

6 The classical limit
of the squared Dirac equation

In this section we shall show how (11) and (14) can be
obtained from the Dirac wave equation as a result of the
transition to the classical limit. In particular, we shall look
for the approximate solution of (53), which becomes zero
out of a classical trajectory &,(7) for A — 0. For these so-
lutions, the bilinear combinations ¢, (z)1g(z) should have
the d-function behavior over & — £(t). Such a behavior for
the solutions of wave equations (wave packets) is valid at
times 0 < t < tg, where t( is a duration of spreading for a
wave packet (tg — oo at i — 0).
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Let us demonstrate the above mentioned by considering
a simple example of non-relativistic Schroedinger equation
for a free particle. If the wave function at the moment of
time ¢ = 0 represents the following wave packet of width

g
0e.0) = () exp { T T

then the solution of the Schroedinger equation in the co-
ordinate representation has the form

(1) = he(x)

B (Tw.)—l/4
(14t
: ) 2
ipor  ipg (z =€)
- t— -
Xexp{ 7 omh 20_(1_1_%) )

where py and xy are the particle momentum and space
coordinate at t = 0, and &£(t) = x¢ + vot, pg = mvgy. The
wave function in the momentum representation is given by

Y(p,t)
o \1/4
= ()

) . _ _ 2
Xexp{—;?];ht— i(p ;0)330 -~ (p 2}];0) a}.

For t < % = to we have

(z —¢£(1)° }

g

.0 = () e {200

moreover, |y (z,t)[? — 6(z —&(t)) and [¥(p,t)]? o

(e, ) = (o) exp {—

d(p—po). Note that in the classical limit, the wave function
e () is an eigenfunction of the non-commuting operators
for space coordinate and momentum,

e (x) = aipe(x) = e (),

Pee) = i pe(e) = poe(z).

(56)

This fact does not contradict the commutation relation
[z, p] = iR (in the limit of i — 0 the operators & and p do
commute).

We assume that in the case of relativistic wave equa-
tions the described above situation is also true. The action
functional that results in the squared Dirac equation (53)
has the form

ta
W = d*z L(z),

t1

L(z) = ﬁﬁﬁw — 5T B — T,

(57)
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where 5# = <5,17—1614,17 Bu = 3,;}—1614“ are the covariant
derivatives and 1 (z) = * (x)4".

In order to obtain the dynamic equations (11) and (14)
as the classical limit of the squared Dirac equation, we
consider the following functional R,:

oL OL
Ra == /dgfﬂ (8'(/} - 8”86}/(/}) Ba'l)Z}.

Here B, = {1, f“”, xt, iD#} are the operators acting on
the field index and space coordinate. Let us now introduce
the indefinite scalar product

(58)

(1, ) = / Py (@) (@),

In this scalar product, the Hermitian conjugate operation
is defined in the standard way:

(11, Aha) = (ATy, o),

where AT = 79A+~% (At is the Hermitian conjugate oper-
ation in the usual scalar product [ d3zv(z)ia(x)). Note
that all the introduced operators B, are Hermitian, B, =
B]. Tt can easily be shown that for two arbitrary operators
A and C, the following formula is valid:

(1, ACY2)" = (12, CTATyy). (59)
Therefore, the functional R} is of the form
- oL oL

Ry = | &@ayB, | = — 0= | . 60

= fawinn (55 -0z, z) - @

The Lagrangian L is real and bilinear over v(z) and 9 (z);
see for instance (57). The functionals (58) and (60) go to
zero if 1(x) and 1 (x) satisfy the Euler-Lagrange equation,
which results in the squared Dirac equation. However, in
our next calculations we shall assume that these functions
do not satisfy the Euler—Lagrange equation.

It is evident that (58) can be written in the form

oL
_ 3
R, = 30/d xaaﬂwBaw

) oL oL
d PR [
+/d:c(a¢ (Q)ﬁuwa“

Next, noting that the Lagrangian (57) gives

(61)

) B

oL 1 75#
20, 2m¢ ’
oL m - e - 1 _
et Y RSN 737 L
50 = 50 g V1 Fu 5 e 4D,
one finds

Ry = ———ay / &P DO By
2m

e
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Then, according to (60), the functional R} is of the form
1 _
R = ——80/d3x¢3a30¢
2m
1 n Ty
+o / xB, (D, D — el F,,

- m2) .

These two formulae result in
R,— R, =0,
__ Ly /dlimz (BOBQ - BGBO) "
2m
1 3.7 Tuv
+5- /d ) (e[Ba,I“ FW]) "
1 3 =
5 /d o, (ﬁu {BM,BG} - {Baﬁu} BH) .
In a similar manner, one obtains

Ra"‘RZ:ba_Caa

where

Cq = % /d3x1/_)Ba (BHB“ + BIA’“’FW + mz) .

%
Here we have employed the fact that ﬁ B wt 0+

3 If ¢ () satisfies the Euler-Lagrange equation with the
Lagranglan (57) resulting in the squared Dirac equation
(53), then R, = R =0, ¢, = 0, and consequently b, (t) =
0,

dt (ﬁOB ~B BO> (62)
- /de& (6[Ba7jWFW] + ﬁu [Bl“ Ba}
(5]

In the case of B, = iB;€7 (62) should be derived separately.
The result is

%/d?’m/—) (ﬁoﬁk n EBO) "

- o Bin)
+ [ @i (5% [B, B + [5 D,] B)

(63)

@ere we have taken into account that Bu + Bu = 5);» +
0 )

As well as in the non-relativistic case, let us assume
that the functions 1, (z), ¥g(z) represent the wave packets
different from zero only for |z —&(t)| < o*/? and 0 < t < t,

(to is a spreading time of the wave packet, which tends to
infinity at i — 0; o is the width of the packet). Therefore,
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approximately (the smaller 7 and o, the more exactly),
the functions ¥, (), ¥g(x) are the eigenfunctions of the
non-commuting operators iD* and z!,

ﬁw ~ T (),
?3“ ~ (1)), (64)
xlw(x) gt)(x), P’ = (t)d(x)

(compare to (56)).
If we calculate the commutators in the right-hand side
of (62), then it can be easily seen that the terms linear in

I have the following structure:
Q1) = [ Eabaln) A@ILEC (o),

where A(z), C(z) are the operators constructed of x!, iD".
Let us consider now the calculation of such terms. If we
were in the classical limit, 1)g(x) were the eigenfunctions

of the matrices I” (as the operators 13“ b,

Iigs(a) = 1" (t)alx), (65)

then the calculation of Q¥ (t) should be trivial. However,
I} are finite-row matrices (with respect to the indices o

and ), which do not commute and, consequently, (65) is
not valid. Therefore, we should act in another way. Namely,
the quantity Q*¥(t) can be written in the form

@(0) = ACO)CEO) [ Podale)ipsta). (60)
We have employed here the fact that 1, (), ¥g(z) dif-
fers from zero only for z! ~ ¢! Let us define I*¥(t) by

the formula

I'ul/ /d3$¢a 7/)04 /d 'r'(/)a 1“51/16( )7 (67)

which reflects the fact that I#¥(t) is the “average” value
of I/ in the state ¢)(z). Then, (66) is of the form

QM (1) = A (1) C(E" ()1 (¢) / dPrtpa(@)vha(z). (68)

This relationship will be used in calculation of the right-
hand side of (62).

We are now in a position to obtain the equations of
motion for point relativistic particles with dipole moments
in an electromagnetic field. Setting B, = 1 in (62) and
using (64), one finds

R0 = comst, x(0) = [ Cada)ale) (69

Let now B, = z!. Then, noting that

[mel] = [ml,gu} = 52,
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one obtains from (62)

e _

dt 70
(we have taken into account (64) and (69)). Next, let us
define the proper time of a particle by the formula

dt 70

—_= 7

dr m (70)
Then )

m&H = wh. (71)

In order to find the dynamic equation for I*¥ (B, = I
in (62)) we note that

(P2, 19 Fy] = 2iF (g7 P + g 177),

[D,.. 1] = [, D, =0.
Therefore, according to (64), we have
570 [ i@ o)
— ¢ [ @rila)(g P I Fri(a),

whence bearing in mind (67)—-(69), one gets

e e
dt — 70(t)

Fap() (g7 1M + g I™).

Performing here the transition to the differentiation over
7 in accordance with (70), we find finally

" = SR Qg + g 1. (12)

Let us now obtain the equation of motion for 7*. To
this end we address (63), which is an analogue of (62) for

B, = in. It is easy to find the commutators entering the
right-hand side of this equation,

[Bk, fWFW} = ", F,,,
[B#,BV} - {E,E} = ieF,,.

Performing the calculations similar to those that were done
in deriving (72), one gets

d e e
— - Jmv -
dt Tk (t) 27T0 (t) ] akFlJ«V (5)

or according to (70),
= 51" Ok Fu () — € Fyn(€). (73)

Here we have used (71). To reduce this equation to the
relativistically-invariant form, let us return again to the
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squared Dirac equation (53). Upon multiplying it by 1
and integrating over d3z, one finds

m, = eF, I" 4+ m?2.

The differentiation of this relation with respect to 7 leads
to
2mo70 + 2mp i = eI" 05 F €.

(in virtue of (14) F,, I*” = 0). On the other hand, accord-
ing to (73) we have

7Tk7:(k = i]“”ﬂkaka, — eﬁkéOFOk.
2m
Therefore,
271'07'1'0 = eIlW(aoFm,)éO + 2€7Tk§.0F0k,

whence taking into account that 70 = méo, one obtains

fto = ——I" O F, + e€ Fy,.
2m
Hence, this equation and (73) combine into the following
relativistically-invariant equation:

mé, =i, = eF € + —I"9,F,,. (74)

2m

The derived equation along with (72) describes the dynam-
ics of a charged particle with dipole moment in an electro-
magnetic field. The obtained equations (72) and (74) com-
pletely coincide with (11) and (14), which were derived on
the basis of the variational principle for the corresponding
Lagrangian. Within other approaches, the classical limit
of the Dirac equation was considered in [14, 18].

In conclusion of this section we would like to empha-
size that the dynamic equations (72) and (74), which have
been derived from the squared Dirac equation as a result
of the passage to the classical limit, are consistent with
the requirement o#”¢, = 0 (the absence of electric dipole
moment).

7 Conclusion

In this paper we have presented Lagrangian and Hamil-
tonian formalisms for the relativistic dynamics of charged
particles with dipole moments (electric and magnetic) in
the presence of an electromagnetic field. In order to de-
scribe these internal degrees of freedom, we have introduced
the dipole moment tensor ¢ and the orthogonal matrix
a,,, of four-rotations in the pseudo-Euclidean space, which
is conjugate to the dipole moment tensor. The obtained
equations of motion agree with the results of other authors.
We have also defined a dipole current through the dipole
moment tensor. This current has allowed us to formulate
the differential conservation laws and to find the explicit
expressions for the energy-momentum and angular mo-
mentum tensors of the considered particles. The analysis
of the differential conservation laws has resulted (in a natu-
ral way) in definitions of a relativistic spin as the intrinsic
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mechanical angular momentum and gyromagnetic ratio.
The latter is expressed in terms of the constants entering
the Lagrangian. It has been shown that if a particle has no
electric dipole moment (in this case o€, = 0), then the
gyromagnetic ratio « is equal to e/m, which corresponds to
the normal magnetic moment. The introduced matrix a,,,
has not only a formal but also a simple physical sense: it
completely specifies the evolution of the dipole moments:

o (1) = a“A(T)a”p(T)UAp(O).

We have found the Poisson brackets for the basic dynamic
variables. These Poisson brackets have been essentially used
in the quantization of the obtained equations of motion. The
canonical quantization procedure has led to the squared
Dirac equation. In the last section we have formulated
a method for obtaining the classical equations of motion
from the wave equations. It is based on the consideration
of the localized wave packets, which determine a parti-
cle trajectory. Applying this method to the squared Dirac
equation, we have come to those dynamic equations dis-
cussed within the Lagrangian approach. The inclusion of
the gravitational field and non-Abelian gauge fields associ-
ated with the SU(n) group into the proposed Lagrangian
formulation has been considered.
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Appendix A: The dipole moment tensor

Let us show that X (z) specifies the densities of the electric
and magnetic dipole moments. To this end we address the
Maxwell equations,

0"F,, = —4nj,, O, Fo\+O0F, +0,F, =0, (Al

where j,(x) is defined by (1)—(4). The first equation from
(A.1) can be written in the form

0" (Fuy +4n5,,) = —4nj). (A.2)

Setting here u = 0 and v = k one obtains

0 ‘
W (Ek + 4n20k) - 41_[‘786)’
whence the quantity Ey(x) + 4nXo,(x) should be inter-
preted as the electric displacement vector Dy (z) and Yo ()
as the density of the electric dipole moment Py (z) = di(x),

Ek = FOka

oo

di(z) = Xop(z) = / dTJOk(T)cS(m —£&(7)).

—0o0
Performing here the integration over 7 we have

00k (7—) 5(

lw) = 50(7)

x—x(t)), t=¢&l(T)

515

Thus, the quantity oor(7)/Eo(7) represents the electric
dipole moment of a moving particle.

Let usnow demonstrate that Xy (x) specifies the density
of the magnetic dipole moment. For this purpose we set
pw=1in (A.2),

0°(Fy + AnX0) + 0" (Fy + Ansy,) = —4mjl.

Since Fjg + 4nX)g = —E — 4nP;, and Fj, = —e. B (BS
is real magnetic field),

0 aDl .(e
_W(_glksBs =+ 4TCElk) = W + 4TI:]l( )

The comparison of this equation to rot H = aa—? + 4wy ()
results in
—€ksBs +4nXy, = —es Hs,

whence )
HS = BS — 4n§aslk2m.

Therefore, the quantity %Eslk 2711 should be identified with
the magnetic moment density M; = ms(z),

ms(z) = lfszkﬂzk(fﬂ) = 1Esuc /oo drou(7)é(x — (7)),

2 2 -
m(x) = ;eslk‘z;(:))a(m —x(t), t=&(r).

Hence, 023(7)/&0(7), 031(7)/&0(T), and o12(7)/Eo(7) are
the z, y, z components of the magnetic dipole moment of
a moving particle.

Appendix B: Equations of motion
in gravitational
and non-Abelian gauge fields

Here we are concerned briefly with the generalization of
the developed approach to the case of a charged point
particle with dipole moment interacting not only with an
electromagnetic field but also with a gravitational and
non-Abelian gauge fields. The possibility of including non-
Abelian gauge fields was discussed in [19]. The starting
point of our approach is the following Lagrangian:

L=Ly—H, (B.1)
with its kinematic part Ly (this part determines the Poisson
brackets for the basic dynamic variables) and Hamiltonian
H (with respect to the proper time 7),

Ly = —pué" — §I1kaisdks + 2i¢*SpT,uu™, (B.2)
L, Lo
H:—%ﬂ' 7TM+%I fuy. (BB)
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Here
a 1 ik
Ty = Pu — eAu - QQaAM - 5 ikAu 5 (B4)
1 .
Fuv = eFu, + gansy + §IlkRikum
where
F,, =0,A, —0,A,,
(B.5)

Ff, = 0,A% — 0,A% — gf,. “ALAS

(Rikuv is the curvature tensor). The non-Abelian charge
¢a (a =1,...n% — 1) specifies the interaction of “colored
quarks” and defines the currents JH(x), which enter the
Yang—Mills field equations,

DLEY = oIV, JM(z) = / drqa(T)éRS(x — £(7)).

—0o0

The quantities A, A7, and Aﬂ“ are respectively the elec-
tromagnetic, SU(n), and Lorentz connections. The unitary
matrix u with det u = 1 (see (B.2)) depends on n? —1 “gen-
eralized coordinates”, which are conjugate to the n? — 1
“generalized momenta” ¢,. T, are the generators of the
fundamental representation of the SU(n) group.

In order to explain the structure of the third term in
(B.2) we consider some properties of the quantity w(U) =
wt(U) (U € SU(n)),

. d
- U

U)=iUuU* )
wlU) =i , 7

Let us introduce the notation
Ra(U) = SpT,w(U).
Let v € SU(n). Then, if v does not depend on ¢, then
Ra(vU) = SpTow(U)v ™.

Noting that the Hermitian matrix v™7T,v with zero trace
can be expanded in the generators T}, of the fundamental
representation of the SU(n) group,

v 0 = u,’(v)Ty,

we have

Ra(WU) = u,l(v)Ry(U),

where u,’(v) is the orthogonal matrix. Thus, under the
transformations U — U, the quantity R,(U) is trans-
formed as a SU(n) vector in the adjoined representation.
If g, is also transformed as a vector, then ¢*R, is a scalar.
Therefore, the quantity ig®SpT,UU™ is invariant with re-
spect to the SU(n) transformations and can be used in the
construction of the Lagrangian for free particles. Similarly,
one can prove that the second term in the Lagrangian (B.2)
is invariant with respect to four-rotations.

As dynamic variables in the Lagrangian L we choose
the following pairs: (p,, £4); (aks, I'*); (qa, u). It is clear
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that the Poisson brackets among the dynamic variables
belonging to different pairs are equal to zero. The non-
trivial Poisson brackets inside of the pairs are determined,
according to (B.2), by

{p;ufy} = 6;’
{Iik:7 Ils} — nkllis + nisIkl o nil[ks

{I““,als} = aisélk — akséf,
_ nkinl’ (BG)

{QG7qb} = fa,b CQC? {ua qa} = —iTaU,

where n** is the flat space Minkowskian metric.
In the tetrahedral formalism, the Lorentz tensors A’
can be related to the world tensors A# by Al = bt Ak,

where b () is a tetrahedral field. Now the metric tensor is

defined by g, (z) = b . (@)br, (). The Lorentz connection

Al is related to the Christoffel symbols and field b' ()
by the formula

FlfL)\ = bl ‘u(akbl v + Akl)\bky)

As a result the following Poisson brackets are obtained
from (B.4)—-(B.6):

{I“V,I)\p} _ gl//\Iup + gupIV)\ _ gu)\IVp o ngIM)\,
1
76F‘/Ll/ - gana - §IAPR>\PILV7

{ﬂ'lhﬂ'l/} = v

{Wu;gy} = (;/l:a

{77;“ Qa} = gfabcAch,

VA A v v A
{mp, I"} =1 ”Fp#prFp#,

{Ga b} = fap “de-

We do not write the Poisson brackets containing the vari-
ables a;; and u because these variables, being cyclic ones,
do not enter the Hamiltonian.

The equations of motion for the dynamic variables are
obtained from the Hamiltonian equations 7 = {r, H} (r is
a dynamic variable) and have the form

£+ 1Y €27 (B.7)

1 ¢ a 1 K
= Egp gu <6FD¢H +gana/_L + 5‘[7 R’Ynap,)

1
pa puv
+ om2?

1
X (SDaF/w + QQaDang + QIWHDaR’ymw> s

v ey, + eIy, (B.8)

1
= E(gl’)\lﬂl) - gHAIyp)(eFAP + gan)C\Lp + IUnRUn)\p)a

. c : g c v

Ga — gfab Azchp = ) fab qCIM F/l;u (Bg)
m

The covariant derivative D,, is defined by

DDLGZ,V = aaGZu - GZ)\FIf\a -
Daw(x) = (aa + ie/ia)w(z)a

iu‘l—ﬁa + ngbaAI;GC

pvo
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where G, is a world tensor with respect to the indices p,
v, and SU(n)-vector with respect to the index a; ¥(x) is
a bispinor, and

1 a 1. i
Au(z) = eAy(x) + 9T, AS(x) + 5Il-kAj.

In the presence of only an electromagnetic field the de-
rived equations coincide with (11) and (14). The dynamic
equations (B.7) and (B.8) can also be found from the La-
grangian

1 - 1 - -
L=V=g < DD — oL Y T;wa)

as aresult of the transition to the classical limit (see Sect. 6).
This Lagrangian corresponds to the squared Dirac equation
in which the external gravitational field and non-Abelian
gauge fields are included (F*” is defined by (B.4) and
(B.5)).
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